• Title/Summary/Keyword: 3D data reconstruction

Search Result 349, Processing Time 0.025 seconds

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.

3D Reconstruction System of Teeth for Dental Simulation (치과 진료 시뮬레이션을 위한 3차원 치아의 재구성 시스템)

  • Heo, Hoon;Choi, Won-Jun;Chae, Ok-Sam
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.133-140
    • /
    • 2004
  • Recently, the dental information systems were rapidly developed in order to store and process the data of patients. But, these systems should serve a doctor a good quality information against disease for diagnostic and surgery purpose so as to success in this field. This function of the system it important to persuade patients to undergo proper surgical operation they needed. Hence, 3D teeth model capable of simulating the dental surgery and treatment is necessary Teeth manipulation of dentistry is performed on individual tooth in dental clinic. io, 3D teeth reconstruction system should have the techniques of segmentation and 3D reconstruction adequate for individual tooth. In this paper, we propose the techniques of adaptive optimal segmentation to segment the individual area of tooth, and reconstruction method of tooth based on contour-based method. Each tooth can be segmented from neighboring teeth and alveolar bone in CT images using adaptive optimal threshold computed differently on tooth. Reconstruction of individual tooth using results of segmentation can be manipulated according to user's input and make the simulation of dental surgery and treatment possible.

Reconstructing 3-D Facial Shape Based on SR Imagine

  • Hong, Yu-Jin;Kim, Jaewon;Kim, Ig-Jae
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • We present a robust 3D facial reconstruction method using a single image generated by face-specific super resolution technique. Based on the several consecutive frames with low resolution, we generate a single high resolution image and a three dimensional facial model based on it. To do this, we apply PME method to compute patch similarities for SR after two-phase warping according to facial attributes. Based on the SRI, we extract facial features automatically and reconstruct 3D facial model with basis which selected adaptively according to facial statistical data less than a few seconds. Thereby, we can provide the facial image of various points of view which cannot be given by a single point of view of a camera.

Automated 3D Model Reconstruction of Disaster Site Using Aerial Imagery Acquired By Drones

  • Kim, Changyoon;Moon, Hyounseok;Lee, Woosik
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.671-672
    • /
    • 2015
  • Due to harsh conditions of disaster areas, understanding of current feature of collapsed buildings, terrain, and other infrastructures is critical issue for disaster managers. However, because of difficulties in acquiring the geographical information of the disaster site such as large disaster site and limited capability of rescue workers, comprehensive site investigation of current location of survivors buried under the remains of the building is not an easy task for disaster managers. To overcome these circumstances of disaster site, this study makes use of an unmanned aerial vehicle, commonly known as a drone to effectively acquire current image data from the large disaster areas. The framework of 3D model reconstruction of disaster site using aerial imagery acquired by drones was also presented. The proposed methodology is expected to assist rescue workers and disaster managers in achieving a rapid and accurate identification of survivors under the collapsed building.

  • PDF

Multiple Description Coding of 3-D Data (3차원 데이터의 다중 부호화 기법)

  • Park, Sung-Bum;Kim, Chang-Su;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.840-848
    • /
    • 2007
  • A multiple description coding (MDC) scheme for 3-D Data is presented. First, a plane-based 3-D data is split into two descriptions, each of which has identical contribution in 3-D surface reconstruction. In order to maximize the visual quality of reconstructed 3-D data, then, plane parameters are modified according to channel error condition. Finally, these descriptions are compressed and transmitted over distinct channels. In decoder, if two descriptions are available, we reconstruct a high quality 3-D data. If only one description is transmitted, however, 3-D surface recovery scheme reduces artifacts on erroneous 3-D surface, yielding a smooth 3-D surface. Therefore, the proposed algorithm guarantees acceptable quality reconstruction of 3-D data even though one channel is totally lost.

Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

  • Cho, Hyung Rok;Roh, Tae Suk;Shim, Kyu Won;Kim, Yong Oock;Lew, Dae Hyun;Yun, In Sik
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods: From 2013 through 2014, three calvarial defects were repaired using custom-made 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

Three dimensional reconstruction and measurement of underwater spent fuel assemblies

  • Jianping Zhao;Shengbo He;Li Yang;Chang Feng;Guoqiang Wu;Gen Cai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3709-3715
    • /
    • 2023
  • It is an important work to measure the dimensions of underwater spent fuel assemblies in the nuclear power industry during the overhaul, to judging whether the spent fuel assemblies can continue to be used. In this paper, a three dimensional reconstruction method for underwater spent fuel assemblies of nuclear reactor based on linear structured light is proposed, and the topography and size measurement was carried out based on the reconstructed 3D model. Multiple linear structured light sensors are used to obtain contour size data, and the shape data of the whole spent fuel assembly can be collected by one-dimensional scanning motion. In this paper, we also presented a corrected model to correct the measurement error introduced by lead-glass and water is corrected. Then, we set up an underwater measurement system for spent fuel assembly based on this method. Finally, an underwater measurement experiment is carried out to verify the 3D reconstruction ability and measurement ability of the system, and the measurement error is less than ±0.05 mm.

Three-Dimensional Reconselction using the Dense Correspondences from Sequence Images (연속된 영상으로부터 조밀한 대응점을 이용한 3차원 재구성)

  • Seo Yung-Ho;Kim Sang-Hoon;Choi Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.775-782
    • /
    • 2005
  • In case of 3D reconstruction from dense data in uncalibrated sequence images, we encounter with the problem for searching many correspondences and the computational costs. In this paper, we propose a key frame selection method from uncalibrated images and the effective 3D reconstruction method using the key frames. Namely, it can be performed on smaller number of views in the image sequence. We extract correspondences from selected key frames in image sequences. From the extracted correspondences, camera calibration process will be done. We use the edge image to fed dense correspondences between selected key frames. The method we propose to find dense correspondences can be used for recovering the 3D structure of the scene more efficiently.

Evaluation of Perfusion and Image Quality Changes by Reconstruction Methods in 13N-Ammonia Myocardial Perfusion PET/CT (13N-암모니아 심근관류 PET/CT 검사 시 영상 재구성 방법에 따른 관류량 변화와 영상 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate changes of quantitative and semi-quantitative myocardial perfusion indices and image quality by image reconstruction methods in $^{13}N$-ammonia ($^{13}N-NH_3$) myocardial perfusion PET/CT. Materials and Methods: Data of 14 (8 men, 6 women) patients underwent rest and adenosine stress $^{13}N-NH_3$ PET/CT (Biograph TruePoint 40 with TrueV, Siemens) were collected. Listmode scans were acquired for 10 minutes by injecting 370MBq of $^{13}N-NH_3$. Dynamic and static reconstruction was performed by use of FBP, iterative2D (2D), iterative3D (3D) and iterative TrueX (TrueX) algorithm. Coronary flow reserve (CFR) of dynamic reconstruction data, extent(%) and total perfusion deficit (TPD) (%) measured in sum of 4-10 minutes scan were evaluated by comparing with 2D method which was recommended by vendor. The image quality of each reconstructed data was compared and evaluated by five nuclear medicine physicians through a blind test. Results: CFR were lower in TrueX 18.68% (P=0.0002), FBP 4.35% (P=0.1243) and higher in 3D 7.91% (P<0.0001). As semi-quantitative values, extent and TPD of stress were higher in 3D 3.07%p (P=0.001), 2.36%p (P=0.0002), FBP 1.93%p (P=0.4275), 1.57%p (P=0.4595), TrueX 5.43%p (P=0.0003), 3.93%p (P<0.0001). Extent and TPD of rest were lower in FBP 0.86%p (P=0.1953), 0.57%p (P=0.2053) and higher in 3D 3.21%p (P=0.0006), 2.57%p (P=0.0001) and TrueX 5.36%p (P<0.0001), 4.36%p (P<0.0001). Based on the results of the blind test for image resolution and noise from the snapshot, 3D obtained the highest score, followed by 2D, TrueX and FBP. Conclusion: We found that quantitative and semi-quantitative myocardial perfusion values could be under- or over-estimated according to the reconstruction algorithm in $^{13}N-NH_3$ PET/CT. Therefore, proper dynamic and static reconstruction method should be established to provide accurate myocardial perfusion value.

  • PDF

New Geometric modeling method: reconstruction of surface using Reverse Engineering techniques

  • Jihan Seo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.565-574
    • /
    • 1999
  • In reverse engineering area, it is rapidly developing reconstruction of surfaces from scanning or digitizing data, but geometric models of existing objects unavailable many industries. This paper describes new methodology of reverse engineering area, good strategies and important algorithms in reverse engineering area. Furthermore, proposing reconstruction of surface technique is presented. A method find base geometry and blending surface between them. Each based geometry is divided by triangular patch which are compared their normal vector for face grouping. Each group is categorized analytical surface such as a part of the cylinder, the sphere, the cone, and the plane that mean each based geometry surface. And then, each based geometry surface is implemented infinitive surface. Infinitive average surface's intersections are trimmed boundary representation model reconstruction. This method has several benefits such as the time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be applied 3D scanner and 3D copier.

  • PDF