• Title/Summary/Keyword: 3D conformal RT

Search Result 22, Processing Time 0.024 seconds

Head and neck extra nodal NHL (HNENL) - Treatment Outcome and Pattern of failure - A Single Institution Experience

  • Giridhar, Prashanth;Mallick, Supriya;Bhasker, Suman;Pathy, Sushmita;Mohanti, Bidhu Kalyan;Biswas, Ahitagni;Sharma, Atul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6267-6272
    • /
    • 2015
  • Background: Extra nodal lymphoma (ENL) constitutes about 33 % of all non-Hodgkin's lymphoma. 18-28% develops in the head and neck region. A multimodality treatment with multi-agent chemotherapy (CT) and radiotherapy (RT) is considered optimum. Materials and Methods: We retrieved the treatment charts of patients of HNENL treated in our institute from 2001-2012. The charts were reviewed and the demographic, treatment details and outcome of HNENL patients were retrieved using predesigned pro-forma. Results: We retrieved data of 75consecutive patients HNENL. Median age was 47years (Range: 8-76 years). Of the 75 patients 51 were male and 24 were female. 55patients were evaluable. The patient and tumor characteristics are summarized in Table 1. All patients were staged comprehensively with contrast enhanced computed tomography of head, neck, thorax, abdomen, pelvis and bone marrow aspiration and biopsy 66 patients received a combination multi-agent CT with CHOP being the commonest regimen. 42 patients received 4 or lesser number of cycles of chemotherapy whereas 24received more than 4 cycles chemotherapy. Post radiotherapy, 41 out of 42 patients had a complete response at 3 months. Only 21patients had a complete response after chemotherapy. All patients received radiation (mostly involved field radiation) as a part of the treatment. The median radiation dose was 45 Gray (Range: 36 Gray-50 Gray). The radiation was planned by 2D fluoro simulation based technique in 37cases and by 3 Dimensional conformal radiation therapy (3DCRT) in 36 cases. Two patients were planned by the intensity modulated radiation therapy (IMRT) technique. IMRT was planned for one thyroid and one nasal cavity primary. 5 patients experienced relapse after a median follow up of 19 months. The median survival was not reached. The estimated two and three year survival were 92.9% (95%CI- 68.6- 95.35) and 88% (95%CI- 60.82 - 92.66) respectively. Univariate analysis revealed higher stage and poorer baseline performance status to be significantly associated with worse progression free survival. 5 patients progressed (relapse or primary disease progression) after treatment. Of the 5 patients, two patients were primary orbital NHL, two patients had NHL nasal cavity and one was NHL thyroid. Conclusions: Combined modality treatment in HNENL confers excellent disease control with acceptable side effects.

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.