• 제목/요약/키워드: 3D body scan data

검색결과 138건 처리시간 0.026초

의류 패턴 설계를 위한 삼차원 인체 체표면 스캔 데이터 활용에 관한 연구 (A Study on the Use of 3D Human Body Surface Shape Scan Data for Apparel Pattern Making)

  • 천종숙;서동애;이관석
    • 복식문화연구
    • /
    • 제10권6호
    • /
    • pp.709-717
    • /
    • 2002
  • In the apparel industry, the technology has been advanced rapidly. The use of 3D scanning systems fur the capture and measurement of human body is becoming common place. Three dimensional digital image can be used for design, inspection, reproduction of physical objects. The purpose of this study is to develop a method that drafts men's basic bodice pattern from scanned 3D body surface shape data. In order to pursue this purpose the researchers developed pattern drafting algorithm. The 3D scanner used in this study was Cyberware Whole Body Scanner WB-4. The bodice pattern drafting algorithm from 3D body surface shape data developed in this study is as follows. First, convert geometric 3D body surface data to 3D polygonal mesh data. Second, develop algorithm to lay out 3D polygonal patches onto a plane using Auto Lisp program. The polygon meshes are coplanar, and the individual mesh is continuously in contact with next one The bodice front surface shape data in polygonal patches form was lined up in bust and waist levels. The back bodice was drafted by lining up the polygonal mesh in scapula, chest, and waist levels. in the drafts, gaps between polygons were formed into the darts.

  • PDF

A Study on i-Fashion 3D Avatar's Consumer satisfaction & Comparison of 3D and Direct Masurement - Based of Domestic University Students

  • Choi, Eunhee;Do, Wolhee
    • 한국의류산업학회지
    • /
    • 제17권3호
    • /
    • pp.421-428
    • /
    • 2015
  • This research is to understand customer satisfaction with virtual fitting based on a 3D body scanner and avatars as well as differences between avatars and the 'real me'. To this end, this research examined Korean college students to facilitate 3D body scanning, avatar generation and surveys. The author used 3D body scan data with direct measurements to identify differences between the 3D body scan data-based 'my avatar' and 'real me' in the virtual dress fitting system. The survey results on 'the level of customer awareness on 3D body scanner' found that the majority of both genders did not know about it and indicated a lower usability to incorporate IT technology into the fashion industry. The question in the 3D body scanning and avatar found an affirmative attitude. Satisfaction levels on the 3D avatars' similarity with 'own body' and garment fitting were positive and indicated a need for further technological improvements to express the avatars identical to customers' own body. More research is necessary for the accuracy of sizes for 3D body scanning that measure body sizes while wearing clothes. Avatars based on such datamay be less similar to 'own body' and cause customer dissatisfaction. Thus, further technology development is required to narrow gaps using data to make avatars that provide more accurate virtual fitting simulation services to customers.

인체 형상 데이터를 이용한 실버 여성 3차원 체형 연구 (Body Shapes of Aged Women Applying 3D Body Scan Data)

  • 김수아;최혜선
    • 복식문화연구
    • /
    • 제17권6호
    • /
    • pp.1099-1111
    • /
    • 2009
  • The purpose of this study is to classify body shapes of aged women by using 3D body scan data. For the body shape analysis and classification, 3D body scan data of 270 aged women were used, and 16 main measurements consisting of a human body were used to conduct factor analysis, cluster analysis and discriminant analysis. The analysis were performed on all 'the method using the absolute value', 'the method using index of height and weight', and 'the method using index of height', and according to the classification results, the method which categorizes body shapes best in terms of their shapes was adopted. As the factor analysis result using the numerical value of height to categorize the body shapes of the aged women, factor 1 was the thickness and width for the height, factor 2 was the height of the upper part of the body for the height, factor 3 was the height of hips for the height, and factor 4 was the height of belly for the height. When the body shapes were categorized with the deducted factors as variables, they were divided into two types. Type 1 was a short and fat body shape($\blacksquare$ type) and 55.6% of the subjects were of this type. Type 2 was for the body shape whose vertical height, including weight, was long but all kinds of width and thickness were small, that is, tall and thin body shape($\blacksquare$ type), and 44.4% of the aged women were in this case.

  • PDF

인체의 3차원 스캔 데이터를 이용한 밀착 바디 슈트 개발 (2D Pattern Development of Tight-fitting Bodysuit from 3D Body Scan Data for Comfortable Pressure Sensation)

  • 정연희
    • 한국생활과학회지
    • /
    • 제15권3호
    • /
    • pp.481-490
    • /
    • 2006
  • Adjusting pressure level in the construction of athletes' tight-fitting garments by reducing the elastic knit pattern is a challenging subject, which influences the performance of the wearer directly. Therefore, in this study, relationship between the reduction rates of the basic pattern obtained from 3D human scan data and resultant clothing pressure was explored to improve the fit and pressure exerted by clothing. 3D scan data were obtained using Cyberware and they were transformed into a flat pattern using software based on Runge-Kutta method. Reduction rate was examined by subjective wear test as well as objective pressure measurement. As a result, difference in the length between the original 3D body scan data and the 2D tight-fitting pattern was 0.02$\sim$0.50cm (0.05$\sim$1.06%), which was within the range of tolerable limits in making clothes. Among the five garments, the 3T-pattern was superior in terms of subjective sensation and fit. The pressure of the 3T pattern was 2$\sim$4 gf/cm2 at five locations on the body, which is almost the same or a bit higher than that of Z-pattern. In the case of tight-fitting overall garment, the reduction rate of the pattern in the wale direction is more critical to the subjective sensation than the course direction. It is recommended that the reduction grading rules of course direction should be larger than that of Ziegert for a better fit of tight-fitting garments. In the case of wale direction, however, reduction grading rule should be kept the same as suggested earlier by Ziegert (1988).

  • PDF

3차원 스캐너를 이용한 20대 남성의 하반신 신축량 분석 (A study of the variations by motion of the Lower body Using 3D Body Surface Scan Data of a man in his early twenties)

  • 손부현;홍경희
    • 한국생활과학회지
    • /
    • 제18권3호
    • /
    • pp.729-740
    • /
    • 2009
  • This study is to research on the rate of expansion or contraction according to movement of the lower body of the man their twenties using Rapid Form software. And aim of this study is to get information of ease allowance in developing slacks pattern using 3D body surface scan data through comparison with existing slacks patterns. Considering on the contraction and expansion according to movement, it need to set the more ease allowance in hip circumference than waist circumference, and the more ease allowance in back hip width than front hip width in slacks. In crotch length, the length of front crotch is revealed contraction but the length of back crotch is revealed expansion. It is desirable lowering front waist line and raising back waist line to possess ease allowance in back crotch area. The length of side seam is revealed a little expansion but the length of inseam is showed a great expansion. To develop slacks pattern of scientific approach using 3D body surface scan data, it need to analysis the rate of expansion and contraction of the lower body based on the movement, shear deformation, slip in fabrics and skin, or in fabrics and fabrics, and slip down from waist line.

3차원 인체 형상의 공극거리 측정 방법 효율성 향상을 위한 연구 (Improvement of Cross Sectional Distance Measurement Method of 3D Human Body)

  • 김민경;남윤자;한현숙;최영림
    • 한국의류산업학회지
    • /
    • 제13권6호
    • /
    • pp.966-971
    • /
    • 2011
  • This study is designed to develop programs that analyze the distance of clothes from human skin and cross-sectional body figures based on 3D human body scan data, and to verify accuracy and efficiency of the program so that it can be used for clothing fit evaluation and 3D human body research. The auto cross-sectional imaging program was developed by using Visual C++ and OpenGL, and the 3D human body scan data were adopted to measure the space between skin and clothing. The space measurements were obtained by two widely used programs, RapidForm and AutoCAD, and a program devised by the researchers of this study. Measuring time and space measurements from different programs were compared in order to verify accuracy and efficiency of the newly-devised program. As a result, no significant difference was found in the measurements. However, the required time to measure one cross section was different within the significance level of 0.05, and the differences become more remarkable as the number of measuring and the angle of space between skin and clothing increase. Therefore, the program developed by this study is expected to be useful for research on body shapes and fit evaluation based on 3D human body scan data in the fashion field.

Application Two-Dimensional Pattern Development of Cycling Tights based on the Three-Dimensional Body Scan Data of High School Male Cyclist

  • Park, Hyunjeong;Do, Wolhee
    • 한국의류산업학회지
    • /
    • 제22권5호
    • /
    • pp.595-606
    • /
    • 2020
  • This study develops an optimal two-dimensional (2D) pattern from three-dimensional human scan data by considering the cycling posture and dermatome of high school male cyclists. By analyzing the body surface change in the cycling posture and considering the dermatome of the lower limbs, the optimal cutting line setting and the development of cycling tights for individual cyclists were presented to provide data that could be used in the clothing industry. We designed three cycling tights to solve the size unsuitability. 3D design 1 is a non-extension design based on the analysis of the 3D human body scan data, in which parts were connected diagonally from the front of the knee to the back of the knee. 3D design 2 removed both the front and back to reduce air resistance during cycling. 3D design 3 did not have a cutting line on the front panel because of the air resistance during cycling in the front area. We analyzed the garment pressure for 8 points of lower body and performed a subjective evaluation of the 3D designed tights and the current cycling tights. The 3D design 1 in this study was well received in the omphalion, thigh, and hip area, while 3D design 3 was well received in the omphalion, thigh, hip, and bottom bands. Therefore, the LoNE of 3D design 1 was applied to the front, and the hip cutting line of 3D design 3 was applied to the back.

Triangle Simplification에 의한 3D 인체형상분할과 삼각조합방법에 의한 2D 패턴구성 (Method of 3D Body Surface Segmentation and 2D Pattern Development Using Triangle Simplification and Triangle Patch Arrangement)

  • 정연희;홍경희;김시조
    • 한국의류학회지
    • /
    • 제29권9_10호
    • /
    • pp.1359-1368
    • /
    • 2005
  • When we develop the tight-fit 2D pattern from the 3D scan data, segmentation of the 3D scan data into several parts is necessary to make a curved surface into a flat plane. In this study, Garland's method of triangle simplification was adopted to reduce the number of data point without distorting the original shape. The Runge-Kutta method was applied to make triangular patch from the 3D surface in a 2D plane. We also explored the detailed arrangement method of small 2D patches to make a tight-fit pattern for a male body. As results, minimum triangle numbers in the simplification process and efficient arrangement methods of many pieces were suggested for the optimal 2D pattern development. Among four arrangement methods, a block method is faster and easier when dealing with the triangle patches of male's upper body. Anchoring neighboring vertices of blocks to make 2D pattern was observed to be a reasonable arrangement method to get even distribution of stress in a 2D plane.

3D 스캔 데이터를 활용한 밀착 패턴원형 개발 (Development of 2D Tight-fitting Pattern from 3D Scan Data)

  • 정연희;홍경희
    • 한국의류학회지
    • /
    • 제30권1호
    • /
    • pp.157-166
    • /
    • 2006
  • The human body, which is composed of concave and convex curvatures, makes it difficult to transfer into 2D patterns directly from 3D data. In previous studies. Jeong, et al.(2004) suggested the block method was fester and easier when dealing with the triangular patches of male's upper dress form. Although the block method is useful to make a pattern, the information(area, length, etc.) from a 2D pattern would be different depending on the direction of the block method. As a result horizontal and diagonal block methods were suggested as optimal methods for 2D tight-fitting patterns. These block methods were closer to the original area of the 3D scan data than the vertical block method. The total area of the 2D pattern obtained by the horizontal and diagonal block methods showed little differences. In case of the horizontal and diagonal block methods, the total error of the 2D pattern area ranged from $0.01\%\~0.25\%$. In comparing the length of the 2D pattern with that of the 3D scan data, the obtained 2D pattern was $0.1\~0.2cm$ shorter than the 3D scan data, which was within the acceptable range of errors in making clothes. 3D space distribution images between the body surface and the experimental clothing were also measured and $3\%$ enlargement of the original pattern was verified as the adequate adjustment.

직접측정과 3차원 측정에 따른 인체치수 및 의복 착장 비교분석 (Comparative Analysis of Body Measurement and Fit Evaluation between 2D Direct Body Measuring and 3D Body Scan Measuring)

  • ;임호선;천종숙
    • 복식문화연구
    • /
    • 제19권6호
    • /
    • pp.1347-1358
    • /
    • 2011
  • This study purposed to analyze differences in body measurement between the 2D direct body measuring method and the 3D body scan measuring method and to perform the appearance evaluation and cross-sectional evaluation of the fit of pants to which body measurements obtained by each measuring method were applied. Body measuring was conducted in 10 women in their 20s-30s using 2D direct body measuring and 3D automatic measuring with Hamamatsu body scanner. Among the 10 women, 3 participated in experimental garment wearing. Experimental pants were made using their 2D direct body measurements and 3D automatic measurements, and wearing tests were performed through expert evaluation and cross-sectional evaluation. The results of the experiment were as follows. According to the results of comparative analysis on differences between 2D direct body measurements and 3D scan measurements, 3D automatic measurements were significantly larger in bust circumference, ankle circumference, armscye circumference, shoulder length, scye depth, and arm length. As circumferences measured with the 3D body scanner were somewhat larger than directly measured ones, it is suggested to adjust ease when using existing pattern making methods. We prepared experimental garments by the same pattern making method through applying body measurements obtained with the two measuring methods, and assessed the fit of the garment comparatively through expert evaluation and 3D scan cross-sectional evaluation. According to the results, 2D-pants using 2D direct body measurements was slightly tighter than 3D-pants using 3D measurements in waist circumference, hip circumference, and abdominal circumference. In the results of comparing appearance in terms of the fit of the experimental garment in each subject, significant difference was observed in most of the compared items. This result suggests that 3D automatic body measuring data may show different accuracy according to body shape and therefore it is necessary to examine difference between 2D direct body measurements and 3D automatic measurements according to body shape.