• 제목/요약/키워드: 3D beam

검색결과 1,695건 처리시간 0.032초

X-밴드 능동적 빔 보상 1 × 2 배열 마이크로스트립 안테나 설계 (Design of a 1 × 2 Array Microstrip Antenna for Active Beam Compensation at X-band)

  • 최윤선;우종명
    • 한국ITS학회 논문지
    • /
    • 제15권2호
    • /
    • pp.111-118
    • /
    • 2016
  • 본 논문은 무인항공기 탑재용 능동 빔 보상이 가능한 X-대역(9.375 GHz) $1{\times}2$ 배열 마이크로스트립 안테나를 제안한다. 먼저 기본형 $1{\times}2$ 배열 마이크로스트립 안테나와 윌킨슨 전력분배기를 결합하여 배열 안테나를 설계 하였고, 배열 안테나의 방사 성능을 확인하였다. 측정 결과, 다음으로 설계된 배열 안테나의 빔 조향을 위해 위상기, 윌킨슨 전력분배기를 모듈구조로 제작하였고, 위상 천이에 따른 빔 조향 특성을 측정 하였다. 금속 차폐를 통해 메인 로브는 $0^{\circ}$ 방향에서 0.3 dB 개선된 -0.6 dBi로, 좌우 대칭인 안정된 방사패턴을 얻었다. 또한 $180^{\circ}$ 방향에서 사이드 로브를 18.8 dB 감소시켰다. 다음으로, 무인항공기 날개에 컴팩트하게 탑재할 수 있도록 배열 안테나의 뒷면에 위상기와 전력분배기를 부착하여 능동 빔 조향 마이크로스트립 배열 안테나를 설계 및 제작 하였다. 측정 결과 최대 이득은 0.7 dB 향상된 0.1 dBi로, 메인 로브는 좌우 대칭이며 사이드 로브가 억제된 형태의 방사 특성을 얻을 수 있었다. 따라서, 무인항공기 날개에 탑재된 배열 안테나에 대해 날개의 변형에 따른 빔 오차를 보상할 수 있는 기본 안테나 설계 기술을 확보하였다.

Filtered-x LMS 알고리즘을 이용한 유연한 외팔보의 능동진동제어 (Active vibration control of a flexible cantilever beam using Filtered-x LMS algorithm)

  • 박수홍;홍진석;김흥섭;오재응
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.107-113
    • /
    • 1997
  • This paper presents the active control of a flexible cantilever beam vibration. The cantilever beam was excitied by a steady-state harmonic and white noise point force and the control was performed by one piezo ceramic actuator bonded to the surface of the beam. An adaptive controller based on filtered-x LMS algorithm was used and the controller was defined by minimizing the square of the response of error sensor. In the experiment, gap sensor was used as an error sensor while the sinusoidal or white noise was applied as a disturbance. In the case of sinusoidal input, more than 20 dB of vibration reduction was achieved over all range of the natural frequencies and it takes 5 seconds to control the vibration at first natural frequency and 1 second at other natural frequencies. In the case of white noise input, 7 dB of vibration reduction was achieved at the first natural frequency and good control performance was achieved in the considered whole frequency range. Results indicate that the vibration of a flexible cantilever beam could be controlled effectively when the piezo ceramic actuator was used with filtered-x LMS algorithm.

  • PDF

연속체-보 천이 유한요소의 구성 (Formulation Method of a Solid-To-Beam Transitional Finite Element)

  • 박우진;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.351-356
    • /
    • 2000
  • Various transition elements are generally used for the effective analysis of a complicated mechanical structure. In this paper, a solid-to-beam transition finite element which connects a continuum element and a $c^1-continuity$ beam element each other is proposed. The shape functions of the transition finite elements, which a 8-noded hexahedral solid element fur 3D analysis and a 4-noded quadrilateral plane element fur 2D analysis are connected to a Euler's beam element, are explicitely formulated. In order to show the effectiveness and convergence characteristics of the proposed transition elements. numerical tests are performed for various examples and their results are compared with those obtained by other methods. As the result of this study. following conclusions are obtained: (1)The proposed transition finite elements show the monotonic convergence characteristics because of having used the compatible displacement folds. (2)As being used the transition element in the finite element analysis, the finite element modelings are more convenient and the analysis results are more accurate because of the formulation characteristies of the Euler's beam element.

  • PDF

Characterization of electron beam (EB) welds for SUS310S

  • Kim, Hyun-Suk;Castro, Edward Joseph D.;Lee, Choong-Hun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.360-360
    • /
    • 2011
  • In this work, SUS310S used for valve plate assembly was electron beam (EB) welded to determine the influence of the parametric conditions on the characteristics of the weld and to minimize porosity and micro-fissures among others. The evolution in the weld geometry and microstructure was examined as a function of the process conditions such as beam current and focusing current under a constant welding speed and accelerating voltage. The integrity of the EB welds in SUS310S was examined for defects (e.g. cracking, porosity, etc.), adequate penetration depth, and tolerable weld width deviation for the various welding conditions. Optical microscopy (OM), x-ray photoelectron spectroscopy analysis (XPS), scanning electron microscopy (SEM) and 3D micro-computed tomography (Micro-CT) for the cross section analysis of the electron beam welded SUS310S were utilized. The tensile strength and hardness were analyzed for the mechanical properties of the EB weld. At the 6 kV accelerating voltage, it was determined that a satisfactory penetration depth and desirable weld width deviation requires a beam current of 30 mA and a focusing current of 0.687 A at the welding speed of 25 mm/sec.

  • PDF

Assessment of metal artifacts in three-dimensional dental surface models derived by cone-beam computed tomography

  • Nabha, Wael;Hong, Young-Min;Cho, Jin-Hyoung;Hwang, Hyeon-Shik
    • 대한치과교정학회지
    • /
    • 제44권5호
    • /
    • pp.229-235
    • /
    • 2014
  • Objective: The aim of this study was to assess artifacts induced by metallic restorations in three-dimensional (3D) dental surface models derived by cone-beam computed tomography (CBCT). Methods: Fifteen specimens, each with four extracted human premolars and molars embedded in a plaster block, were scanned by CBCT before and after the cavitated second premolars were restored with dental amalgam. Five consecutive surface models of each specimen were created according to increasing restoration size: no restoration (control) and small occlusal, large occlusal, disto-occlusal, and mesio-occluso-distal restorations. After registering each restored model with the control model, maximum linear discrepancy, area, and intensity of the artifacts were measured and compared. Results: Artifacts developed mostly on the buccal and lingual surfaces. They occurred not only on the second premolar but also on the first premolar and first molar. The parametric values increased significantly with increasing restoration size. Conclusions: Metallic restorations induce considerable artifacts in 3D dental surface models. Artifact reduction should be taken into consideration for a proper diagnosis and treatment planning when using 3D surface model derived by CBCT in dentofacial deformity patients.

Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays

  • Kaden M. Powell;Heayoung P. Yoon
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.17.1-17.9
    • /
    • 2020
  • Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Chang M. Kang;Seung-Tae Jung;Seong-Hwan Pyo;Youjung Seo;Won-Gu Kang;Jin-Kyu Kim;Young-Chang Nho;Jong-Seok Park;Jae-Hak Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4678-4684
    • /
    • 2023
  • Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

LID (Lyon Intraoperative Device) 이용한 수술중 방사선치료시 전자선의 선량분포 특성 (The dosimetric Properties of Electron Beam Using Lyon Intraoperative Device for Intraoperative Radiation Therapy)

  • 김계준;박경란;이종영;김희연;성기준;추성실
    • Radiation Oncology Journal
    • /
    • 제10권1호
    • /
    • pp.85-93
    • /
    • 1992
  • 수술중 방사선치료를 환자에 적용하기에 앞서 본원이 보유하고있는 LID를 이용한 전자선의 선량분포 특성을 연구하였다. 이러한 선량 특성에 대한 자료는 적절한 Cone의 모양이나 크기, 에너지를 결정하게하며 빠르고 정확한 계산을 위하여 필요하다. 따라서, 본 저자들은 3-Dimensional Water Phantom Dosimetry System를 이용하여 Cone의 크기, Cone의 모양, 보상필터 사용 유무에 따라 Cone의 출력인자, 조직표면선량, 선축상 최대치 지점, $90\%$의 깊이, 대칭도와 편평도, SSD 보상인자, 선량분포 등을 측정하여 다음과 같은 결과를 얻었다. 1) Cone의 출력인자는 Cone모양에 따라 각각 측정하였으며 Cone의 크기와 에너지가 작을수록 급격하게 감소하는 결과를 보였다. 2) 보상 필터의 하나인 Flattening Filter를 사용한 결과 포면 선량이 6 MeV, 9 MeV, 12 MeV에 대하여 각각 $85.3\%$, $89.2\%$, $93.4\%$였고, 이 보상 필터를 사용하므로 선량률과 beam의 투과율은 감소하지만 치료부위에 따라 beam의 모양을 변형시키며 특히, 표면선량을 $90\%$나 그 이상으로 증가시킬수 있었다. 3) 3차에 걸친 beam의 collimation과 보상 필터를 결합하여 사용한 결과 매우 좋은 beam의 균일성과 편평도 뿐만아니라 $90\%$ 등선량곡선 넓이가 커지는 결과를 보였다. 4) 치료를 위하여 중요한 간격인 SSD 100cm에서 SSD 110cm까지의 출력인자는 측정치와 계산치가 Cone의 크기와 모양, 에너지에 따라 $1\~3\%$의 차이를 보였다.

  • PDF

Multi-view Display with Hologram Screen using Three-dimensional Bragg Diffraction

  • Okamoto, Masaaki;Shimizu, Eiji
    • Journal of Information Display
    • /
    • 제3권3호
    • /
    • pp.1-11
    • /
    • 2002
  • Multi-view function is important to three-dimensional displays without dedicated glasses. It is the reason that the observers earnestly desire to change their positions freely. Multi-viewing is also principal to the reality of three-dimensional (3D) image displayed on the screen. The display of projection type has the advantage that the number of viewing points can be easily increased according to the number of projectors. The authors research on multi-view projection display with hologram screen. Powerful directionality of the diffracted beam from hologram screen is required unlike two-dimensional (2D) display. We developed a new method that all diffracted beams satisfied the same Bragg condition and became sufficiently bright to observe the 3D image under usual indoor light. The principle is based on the essential Bragg diffraction in the three-dimensional space. Owing to such three-dimensional Bragg diffraction we achieved an excellent hologram screen that could be multiple reconstructed in spite of single recording. This hologram screen is able to answer arbitrary numbers of viewing points within wide viewing zone. The distortion of 3D image becomes also sufficiently small with the method of dividing the cross angle between illumination and diffraction beam.

Breakdown Properties in Physiological Saline by High Voltage Pulse Generator

  • Byeon, Yong-Seong;Song, Ki-Baek;Uhm, Han-Sup;Shin, Hee-M.;Choi, Eun-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.333-333
    • /
    • 2011
  • We have investigated the breakdown properties in liquids by high voltage pulse system. High voltage pulse power system is consisted of the Marx-generator with two capacitors (0.5 ${\mu}F$, withstanding voltage is 40 kV), to which the charging voltage can be applied to maximum 30 kV DC, spark gap switch and charging resistor of 20 $M{\Omega}$. We have made use of tungsten pin electrodes of anode-cathode (A-K), which are immersed into the liquids. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current monitor (IPC CM-1.S). Especially the high speed breakdown or plasma propagation characteristics in the pulsed A-K gap have been investigated by using the high speed ICCD camera. We have measured the electron temperature through the Boltzmann plot method from the breakdown spectrums. Here the A-K gap has been changed by 1 mm, 2 mm, and 3 mm. The used liquids are distilled water and solution of salt (0.9 %). The output voltage and current signals at breakdown in distilled water are shown to be bigger than those in saline solution. The breakdown voltage and current characteristics in liquids will be discussed in accordance with A-K gap distances. It is also found that the electron temperatures and plasma densities in liquids are decreased in conformity with A-K gap.

  • PDF