• Title/Summary/Keyword: 3D baffle

Search Result 50, Processing Time 0.029 seconds

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Investigation about the Decrease Efficiency of Thermal Discharge Temperature at Mixing Basin of Power Plant using 3-D CFD (3차원 수치모의에 의한 발전소 배수로 혼합지에서의 온배수 수온저감 효과에 대한 고찰)

  • Park, Byong-Jun;Lee, Sang-Hwa;Park, Ji-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.593-593
    • /
    • 2012
  • 본 연구는 화력 및 원자력 발전소로 취입된 냉각수(circulating and essential service water)가 복수기로부터 온배수 형태의 개수로 흐름으로 표층배수 될 경우 수온을 저감시키기 위해 주입하는 희석수(by-pass cooling water)와의 혼합효과의 효율성을 증대시키고, 불리한 수리현상을 야기하지 않으며, 경제적인 배수로 구조물을 고찰하기 위한 목적으로 시도되었다. 배수로 구조물 내 온배수와 희석수가 혼합되는 구간을 혼합지(mixing basin)라 하는데, 본 과업에서는 ${\bigcirc}{\bigcirc}$발전소의 배수로 구간 중 혼합지를 대상으로 FLOW-3D$^{(R)}$를 이용한 3차원 수치모형을 구축하고, 총 9개에 해당하는 각 대안별 현상을 분석하고 비교하였다. 각 대안들의 차이점은 배수로에 설치되는 보조구조물들의 형상과 배열 등이며, 복수기로부터 나오는 배출수의 수온은 $42^{\circ}C$, 희석수는 $35^{\circ}C$이고, 본 과업의 주요 관심대상 물리량은 유속과 온도이다. 배수로에 아무런 보조 구조물이 없는 형태인 기본 계획안을 검토한 결과, 평균 $3.31^{\circ}C$의 수온강하가 이루어졌으나, 우안 쪽으로 강한 흐름이 발생하여 수온의 좌우편차가 $4.61^{\circ}C$ 가량 발생하는 것으로 나타났다. 기본 계획안의 검토결과를 보완하기 위한 대안으로 연직 흐름의 소산을 위해 고안된 잠형 소파블록(baffle block) 설치안은 평균 $3.06^{\circ}C$의 수온강하가 이루어지고 $4.44^{\circ}C$의 수온 좌우편차가 발생했다. 지그재그(zigzag) 형태의 흐름을 만들어 혼합효과를 올리기 위한 미로형 수제(labyrinth groin) 설치안은 평균 $5.33^{\circ}C$의 수온강하가 이루어지고, $1.43^{\circ}C$의 수온 좌우편차를 보여줘 검토했던 대안들 중 가장 좋은 결과를 보여주었다. V자 배열 소파블럭(deformed block) 설치안은 연직 및 수평방향의 소산을 기대했으나 평균 $3.00^{\circ}C$의 수온 강하와 $4.41^{\circ}C$의 수온 좌우편차를 나타냈다. 벤츄리(Venturi) 형태의 흐름을 발생시키기 위한 병목형(bottleneck) 수로안은 평균 $3.18^{\circ}C$의 수온강하와 $3.94^{\circ}C$의 수온 좌우편차, 흐름의 소산과 흐름방향을 변화시키기 위한 와형 수제(swirl groin) 설치안은 평균 $2.24^{\circ}C$의 수온강하와 $1.48^{\circ}C$의 수온좌우편차, 우안 흐름을 지연시키기 위한 물방석(water cushion) 수로안은 평균 $3.03^{\circ}C$의 수온강하와 $4.50^{\circ}C$의 수온 좌우편차, 우안의 흐름을 좌안으로 보내기 위한 분사형(injector) 수로안은 평균 $3.13^{\circ}C$의 수온강하와 $4.45^{\circ}C$의 수온 좌우편차, 우안의 흐름을 막기 위한 외팔형 수제(cantilever groin) 설치안은 평균 $3.11^{\circ}C$의 수온강하와 $3.02^{\circ}C$의 수온 좌우편차가 발생하는 것으로 나타났다.

  • PDF

Experimental and Numerical Analysis for Effects of Two Inclined Baffles on Heat Transfer Augmentation in a Rectangular Duct (사각 덕트 내에 설치된 2개의 경사진 배플에 의한 열전달 증진 효과에 관한 실험 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Putra, Ary Bachtiar Krishna
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.751-760
    • /
    • 2007
  • Baffles enhance heat transfer by disturbing boundary layer and bulk flow, creating impingement, and increasing heat transfer surface area. This study was performed to determine how the two inclined baffles (${\alpha}=5^{\circ}$ perforated models) placed at a rectangular channel affect heat transfer and associated friction characteristics. The parametric effects of perforated baffles (3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,800 on the heated target surface are explored. Comparisons of the experimental data with the numerical results by commercial code CFX 10.0 are presented. As for the investigation of heat transfer behaviors on local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=8.0$ of the edge of baffles, it is evident that the inclined perforated baffles augment overall heat transfer significantly by both jet impingement and boundary layer separation. There exists an optimum perforation density to maximize heat transfer coefficients; i.e., the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.

Development of a Culture Medium for Growth and Sporulation of Bacillus polyfermenticus SCD (프로바이오틱 비스루트균의 아포생산을 위한 최적배지 개발)

  • Lee, Kwang-Ho;Park, Kyu-Yong;Kim, Seong-Mi;Kim, Won-Seok;Paik, Hyun-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.263-268
    • /
    • 2002
  • Bacillus polyfermenticus SCD, which is commonly called a 'Bisroot' strain, has been appropriately used for the treatment of long-term intestinal disorders, since the live strains, in the form of active endospores, can successfully reach the target intestine. Goal of this study was to develop an industrial medium for growth and sporulation of B. polyfermenticus SCD. From the results of effect of mixed carbon sources on growth and sporulation of B. polyfermenticus SCD, glucose 2% and starch 2% was particularly found to be the most effective for the maximum number of spore production, resulting in spore cells of $4.3{\times}10^9\;spores/mL$ with a sporulation yield of 91%. For the effect of nitrogen sources, the maximum spore cells of $5.7{\times}10^9\;spores/mL$ of B. polyfermenticus SCD with a sporulation yield of 97% was obtained when B. polyfermenticus SCD was cultivated in an optimum nitrogen source medium containing 5% soybean flour. A medium involving proper phosphate salt yielded the maximum number of a spore cells of $6.0{\times}10^9\;spores/mL$ with a sporulation yield of 95%. Finally, the efficacy of an industrial medium (KH5 medium) on growth and sporulation of B. polyfermenticus SCD was investigated in jar fermenter. The higher number of viable cells $(3.3{\times}10^{10}\;cells/mL)$ and spore cells $(3.0{\times}10^{10}\;spores/mL)$ were obtained in 5 L fermenter when compared with a 500 mL baffle flask cultivation. Thus, KH5 medium developed in this study shows promise as an industrial medium because of higher cells and sporulation yield.

EVALUATION AND TEST OF A CRACK INITIATION FOR A 316 SS CYLINDRICAL Y-JUNCTION STRUCTURE IN A LIQUID METAL REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • A liquid metal reactor (LMR) operated at high temperatures is subjected to both cyclic mechanical loading and thermal loading; thus, creep-fatigue is a major concern to be addressed with regard to maintaining structural integrity. The Korea Advanced Liquid Metal Reactor (KALIMER), which has a normal operating temperature of $545^{\circ}C$ and a total service life time of 60 years, is composed of various cylindrical structures, such as the reactor vessel and the reactor baffle. This study focuses on the creepfatigue crack initiation for a cylindrical Y-junction structure made of 316 stainless steel (SS), which is subjected to cyclic axial tensile loading and thermal loading at a high-temperature hold time of $545^{\circ}C$. The evaluation of the considered creep-fatigue crack initiation was carried out utilizing the ${\sigma}_d$ approach of the RCC-MR A16 guide, which is the high-temperature defect assessment procedure. This procedure is based on the total accumulated strain during the service time. To confirm the evaluated result, a high-temperature creep-fatigue structural test was performed. The test model had a circumferential through wall defect at the center of the model. The defect front of the test model was investigated after the $100^{th}$ cycle of the testing by utilizing a metallurgical inspection technique with an optical microscope, after which the test result was compared with the evaluation result. This study shows how creep-fatigue crack initiation for a high-temperature structure can be predicted with conservatism per the RCC-MR A16 guide.

Case Study on Remodeling Outlet Structure within a Sedimentation Basin for Improving Performance (침전지 유출부 구조 Remodeling을 통한 개선사례 연구)

  • Kim, Seong-Su;Park, No-Suk;Moon, Yong-Taik;Lee, Sun-Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.911-918
    • /
    • 2006
  • This study was conducted to evaluate the effect of the launder type on settling performance and hydrodynamic behavior within the two certain full-scale sedimentation basins (each flow rate/one basin; $10,000m^3/d$); one is the transverse typed launder(existing basin) and the other is building the finger type launder in combination with the longitudinal baffle. Comparative experimental investigations have been carried out through residual turbidity and particle concentration measurements in each effluent from two basins with the transverse and the finger type launders, respectively. From the experimental results, we could observe that turbidity removal rate in the finger type launder basin (modified basin) is about 30% higher than that in the transverse type launder basin (existing basin). Also, from the measurement of total particle concentration in each effluent, the removal efficiency was improved about 27% within modified basin compared to the existing basin. In order to explain the comparative experimental results and investigate the hydridynamic behavior within each basin in more detail, we conducted computational fluid dynamics (CFD) simulation and verified simulation results with acoustic Doppler velocimetry (ADV) technique. From the CFD simulation, it was investigated that extreme upward flow occurs underneath of the transverse launder. On the other hand, in the case of modified basin, the upward flow, which occurred in the beneath of launder, was much less than that in the existing basins.

DEVELOPMENT OF THE MECHANICAL STRUCTURE OF THE MIRIS SOC (MIRIS 우주관측카메라의 기계부 개발)

  • Moon, B.K.;Jeong, W.S.;Cha, S.M.;Ree, C.H.;Park, S.J.;Lee, D.H.;Yuk, I.S.;Park, Y.S.;Park, J.H.;Nam, U.W.;Matsumoto, Toshio;Yoshida, Seiji;Yang, S.C.;Lee, S.H.;Rhee, S.W.;Han, W.
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.53-64
    • /
    • 2009
  • MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}\times3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF