• Title/Summary/Keyword: 3D Visualization

Search Result 982, Processing Time 0.037 seconds

Chromosome Analysis in Clinical Samples by Chromosome Diagnostic System Using Fluorescence in Situ Hybridization (국산 Fluorescence in Situ Hybridization 시스템을 이용한 다양한 검체에서의 염색체 분석)

  • Moon, Shin-Yong;Pang, Myung-Geol;Oh, Sun-Kyung;Ryu, Buom-Yong;Hwang, Do-Yeong;Jung, Byeong-Jun;Choe, Jin;Sohn, Cherl;Chang, Jun-Keun;Kim, Jong-Won;Kim, Seok-Hyun;Choi, Young-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.335-340
    • /
    • 1997
  • Fluorescence in situ hybridization (FISH) techniques allow the enumeration of chromosome abnormalities and from a great potential for many clinical applications. In order to produce quantitative and reproducible results, expensive tools such as a cooled CCD camera and a computer software are required. We have developed a Chromosome Image Processing System (Chips) using FISH that allows the detection and mapping of the genetic aberrations. The aim of our study, therefore, is to evaluate the capabilities of our original system using a black-and-white video camera. As a model system, three repetitive DNA probes (D18Z1, DXZ1, and DYZ3) were hybridized to variety different clinical samples such as human metaphase spreads and interphase nuclei obtained from uncultured peripheral blood lymphocytes, uncultured amniocytes, and germ cells. The visualization of the FISH signals was performed using our system for image acquisition and pseudocoloring. FISH images were obtained by combining images from each of probes and DAPI counterstain captured separately. Using our original system, the aberrations of single or multiple chromosomes in a single hybridization experiment using chromosomes and interphase nuclei from a variety of cell types, including lymphocytes, amniocytes, sperm, and biopsied blastomeres, were enabled to evaluate. There were no differences in the image quality in accordance with FISH method, fluorochrome types, or different clinical samples. Always bright signals were detected using our system. Our system also yielded constant results. Our Chips would permit a level of performance of FISH analysis on metaphase chromosomes and interphase nuclei with unparalleled capabilities. Thus, it would be useful for clinical purposes.

  • PDF

Effect of Reversible Air-circulation Fans on Air Uniformity in a Cultivation Facility for Oyster Mushroom (느타리재배사 정역 제어 대류팬이 공기 균일도에 미치는 영향)

  • Yum, Sung Hyun;Kim, Si Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2021
  • It has been known that oyster mushrooms cultivated in facilities with thermal insulation have been strongly affected by inner environments. Forced air-circulation fans exert much direct influence on disturbing air inside the facility so the matter is of particular interest. This study is carried out to investigate the measured levels of air uniformity in a cultivation facility for oyster mushroom in the various cases that reversibly controlled air-circulation fans which drove the flow in the upward and reverse direction by turn and unidirectional fans by which the wind blew upwards only were operated from July 1 to 10. The actual survey for the selection of ongoing operation cases presented that farmers, even though there were some discrepancies, have made use of fans in a way that it paused for 5-30min after running for 5-15min by turn. The level of air uniformity in the case of adopting reversible fans revealed a slight difference of 1.4-1.8℃ (Temp.) and 7.8-8.7% (R.H.) under the condition of not using a cooler during the investigation period. By contrast, unidirectional fans showed a noticeable difference of 3.2-3.7℃ and 14.0-15.4%, which meant that air uniformity driven by reversible fans much more increased compared to that for unidirectional fans. Among the twenty operational applications considered for reversible fans, the circumstance that the wind blew upwards for 10-15min and ceased for 5-10min and blew again in the reverse direction for 10-15min in succession gave minor improvements at the level of air uniformity, but at present there was somewhat difficult to make decision on which cases were optimally best. It seems necessary that the effects of reversible fans on air uniformity as well as qualities of oyster mushrooms have to be appraised in the cultivation period and the flow visualization needs to be done to ascertain the performance of air mixture.

$^{99m}Tc-DISIDA$ Hepatobiliary Scintigraphic Study in Symptomatic Patients after Various Biliary Surgeries: Regional Emphasis of Recurrent Pyogenic Cholangitis and Intrahepatic Duct Stones (담도계 수술후 증상이 재발한 환자에서의 $^{99m}Tc-DISIDA$ Hepatobiliary Scintigraphy: 재발 농양성 간담도염과 간내 담석 발생빈도의 지역적인 특성을 고려한 연구)

  • Yum, H.Y.;Park, Y.H.;Suh, J.K.;Lee, S.D.;Choi, K.H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.20 no.2
    • /
    • pp.19-38
    • /
    • 1986
  • 54 patients who had symptoms after biliary operation were studied by $^{99m}Tc-DISIDA$ hepatobiliary scintigraphy for evaluation of clinical utility, with regional emphasis of recurrent pyogenic cholangitis (RPC) and intrahepatic stones. As expected, the most common disease was recurrent pyogenic cholangitis regardless of surgical anastomosis, 58% and next frequent disease was clonorhis sinensis infestation, 26%, stenosis of ampula vater 8%, and chronic hepatitis 4% (20% of patients had hepatitis but they showed clinically and scintigraphically dominallt combined disease feature). 87% of recurrent pyogenic cholangitis was associated with stones in intra or/and extrahepatic ducts and only 11.4% of RPC was found to be associated with Cs-infestation. The scintigraphic diagnosis of RPC was 81.6% and 78.6% of stones was detected by indirect visualization of scintigraphy findings and 71.7% of Cs-infestation was detected by scintigraphy. The characteristic bile flow pattern were described.

  • PDF

Animation and Machines: designing expressive robot-human interactions (애니메이션과 기계: 감정 표현 로봇과 인간과의 상호작용 연구)

  • Schlittler, Joao Paulo Amaral
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.677-696
    • /
    • 2017
  • Cartoons and consequently animation are an effective way of visualizing futuristic scenarios. Here we look at how animation is becoming ubiquitous and an integral part of this future today: the cybernetic and mediated society that we are being transformed into. Animation therefore becomes a form of speech between humans and this networked reality, either as an interface or as representation that gives temporal form to objects. Animation or specifically animated films usually are associated with character based short and feature films, fiction or nonfiction. However animation is not constricted to traditional cinematic formats and language, the same way that design and communication have become treated as separate fields, however according to $Vil{\acute{e}}m$ Flusser they aren't. The same premise can be applied to animation in a networked culture: Animation has become an intrinsic to design processes and products - as in motion graphics, interface design and three-dimensional visualization. Video-games, virtual reality, map based apps and social networks constitute layers of an expanded universe that embodies our network based culture. They are products of design and media disciplines that are increasingly relying on animation as a universal language suited to multi-cultural interactions carried in digital ambients. In this sense animation becomes a discourse, the same way as Roland Barthes describes myth as a type of speech. With the objective of exploring the role of animation as a design tool, the proposed research intends to develop transmedia creative visual strategies using animation both as narrative and as an user interface.

Developing a Korean Standard Brain Atlas on the basis of Statistical and Probabilistic Approach and Visualization tool for Functional image analysis (확률 및 통계적 개념에 근거한 한국인 표준 뇌 지도 작성 및 기능 영상 분석을 위한 가시화 방법에 관한 연구)

  • Koo, B.B.;Lee, J.M.;Kim, J.S.;Lee, J.S.;Kim, I.Y.;Kim, J.J.;Lee, D.S.;Kwon, J.S.;Kim, S.I.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.162-170
    • /
    • 2003
  • The probabilistic anatomical maps are used to localize the functional neuro-images and morphological variability. The quantitative indicator is very important to inquire the anatomical position of an activated legion because functional image data has the low-resolution nature and no inherent anatomical information. Although previously developed MNI probabilistic anatomical map was enough to localize the data, it was not suitable for the Korean brains because of the morphological difference between Occidental and Oriental. In this study, we develop a probabilistic anatomical map for Korean normal brain. Normal 75 blains of T1-weighted spoiled gradient echo magnetic resonance images were acquired on a 1.5-T GESIGNA scanner. Then, a standard brain is selected in the group through a clinician searches a brain of the average property in the Talairach coordinate system. With the standard brain, an anatomist delineates 89 regions of interest (ROI) parcellating cortical and subcortical areas. The parcellated ROIs of the standard are warped and overlapped into each brain by maximizing intensity similarity. And every brain is automatically labeledwith the registered ROIs. Each of the same-labeled region is linearly normalize to the standard brain, and the occurrence of each legion is counted. Finally, 89 probabilistic ROI volumes are generated. This paper presents a probabilistic anatomical map for localizing the functional and structural analysis of Korean normal brain. In the future, we'll develop the group specific probabilistic anatomical maps of OCD and schizophrenia disease.

Usage of digital technique to facilitate communication between dentist, dental lab technician, and patients in diagnosis and restoration for maxillary anterior implant: a case report (디지털 기법을 활용한 치과의사, 기공사, 그리고 환자 간의 효과적인 소통을 통한 전치부 임플란트의 진단 및 심미수복 증례)

  • Bang, Haemin;Jang, Woohyung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.42-51
    • /
    • 2022
  • Esthetic restoration of maxillary anterior implant heavily depends on the direction of installation of implant fixture. In patients with malpositioned implant, it is crucial to communicate the limitations of prosthetic outcome with the patient before starting on a restoration. To facilitate the communication, three-dimensional virtual representation by superimposing facial and intraoral digital scans with Computed Tomography (CT, dicom file) was used for visualization of the limitations of prosthesis. Through digital diagnostic wax-up, the profile of right maxillary anterior incisor implant was expected to be protrusive, which the patient was not satisfied with. Since the patient already had done root canal treatment on left maxillary anterior incisor due to previous trauma, a new prosthetic design including both right and left maxillary anterior incisors was presented to the patient. The second design was chosen and his comments were delivered to dental lab. The patient was satisfied with the new prosthesis, aesthetically and functionally.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.