• Title/Summary/Keyword: 3D Stereo Display

Search Result 102, Processing Time 0.025 seconds

A 3-D Vision Sensor Implementation on Multiple DSPs TMS320C31 (다중 TMS320C31 DSP를 사용한 3-D 비젼센서 Implementation)

  • Oksenhendler, V.;Bensrhair, Abdelaziz;Miche, Pierre;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.124-130
    • /
    • 1998
  • High-speed 3D vision systems are essential for autonomous robot or vehicle control applications. In our study, a stereo vision process has been developed. It consists of three steps : extraction of edges in right and left images, matching corresponding edges and calculation of the 3D map. This process is implemented in a VME 150/40 Imaging Technology vision system. It is a modular system composed by a display, an acquisition, a four Mbytes image frame memory, and three computational cards. Programmable accelerator computational modules are running at 40 MHz and are based on TMS320C31 DSP with a $64{\times}32$ bit instruction cache and two $1024{\times}32$ bit internal RAMs. Each is equipped with 512 Kbytes static RAM, 4 Mbytes image memory, 1 Mbytes flash EEPROM and a serial port. Data transfers and communications between modules are provided by three 8 bit global video bus, and three local configurable pipeline 8 bit video bus. The VME bus is dedicated to system management. Tasks between DSPs are distributed as follows: two DSPs are used to edges detection, one for the right image and the other for the left one. The last processor computes the matching process and the 3D calculation. With $512{\times}512$ pixels images, this sensor generates dense 3D maps at a rate of about 1 Hz depending of the scene complexity. Results can surely be improved by using a special suited multiprocessors cards.

  • PDF

A Study on Display Data of Radiation Point at 3 Dimensions (3차원 공간상 방사선원 위치 정보 표현에 관한 연구)

  • Lee, Seung-Min;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1130-1132
    • /
    • 2007
  • In this research, 3D position exploring system was developed to detect direction and position of radiation source by using two general CCD camera. This system consists of a radiation detection device, a controlling device, and a monitoring device. A radiation detection device is composed of a collimator, a scintillator, CCD sensor, and radiation shielding part. Incident radiation is firstly collimated with direction and converted into visual lights in a scintillator. The CCD sensor detect the converted visual light and send a signal as an image. This can explore a radiation source with direction and distance from geometrical structure of two sensors. From these information, the developed 3D position exploring system can provide 3D radiation source information. This research will be useful for managing and processing radioactive materials in remote.

Biomimetic approach object detection sensors using multiple imaging (다중 영상을 이용한 생체모방형 물체 접근 감지 센서)

  • Choi, Myoung Hoon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Lee, Dong Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.91-93
    • /
    • 2016
  • From the 2-D image extracting three-dimensional information as the latter is in the bilateral sibeop using two camera method and when using a monocular camera as a very important step generally as "stereo vision". There in today's CCTV and automatic object tracking system used in many medium much to know the site conditions or work developed more clearly by using a stereo camera that mimics the eyes of humans to maximize the efficiency of avoidance / control start and multiple jobs can do. Object tracking system of the existing 2D image will have but can not recognize the distance to the transition could not be recognized by the observer display using a parallax of a stereo image, and the object can be more effectively controlled.

  • PDF

A Study on the Performance Comparison of 3D File Formats on the Web

  • Lee, Geon-hee;Choi, Pyeong-ho;Nam, Jeong-hwan;Han, Hwa-seop;Lee, Seung-hyun;Kwon, Soon-chul
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.65-74
    • /
    • 2019
  • 3D file formats typically include OBJ (Wavefront file format), STL (STereoLithography), and FBX (Filmbox). Each format has limitations depending on its configuration and usage, and supported formats are different depending on the software application. glTF helps uniform integration of 3D file formats and allows for more efficient transmission of large 3D geometry files by organizing them in a binary format. This paper presents explanation on OBJ, FBX, and STL which are major examples of existing 3D file formats. It also explains the concept and characteristics of glTF and compares its performance with other 3D file formats on the web. The loading time and packets of each 3D file format are measured according to the web browser environment by means of Google Chrome, Firefox and Microsoft Edge. Experimental results show that glTF is the most efficient and that it exhibits the best performance. As to STL, relatively excessive traffic was observed. This study is expected to contribute to reducing rendering time on the web as 3D file formats are used.

The effect of inter-pupillary distance on stereopsis (동공간 거리가 입체시 지각에 미치는 영향)

  • 감기택;이주환
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.3
    • /
    • pp.37-49
    • /
    • 2003
  • Most 3D display systems heavily depend on binocular disparity to produce 3-dimensional depth of a scene. In principle, the vergence angle of the object on fixation and binocular disparity of non-fixated objects vary with the inter-pupillary distance(IPD) of the observer. However, most stereo systems provide the identical stereo image pairs regardless of the observers' IPD, which may result in variation in the perceived depth. In this study, we manipulated the vergence angle of the fixated object and binocular disparity of the non-fixated object. The range of the individual difference in the perceived depth was found to be increased with the increase of disparity for both the fixated and non-fixated objects, and the individual difference was well fitted by the regression line of the observers' IPD. These results suggest that individual difference in the perceived depth from the identical stereo images should be greatly reduced if the stereo system calibrates the disparity of the object by the observers' IPD in generating the stereo images and the regression line found in this study might be useful in the calibrating the disparity of the images.

  • PDF

Multi-Viewpoint Stereo Image Synthesis Using Multi-Resolution EPI Method (다해상도 EPI 방식에 의한 다시점 입체 영상 합성)

  • 장흥엽;이제호;권용무;김상국;박상희
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Among the main technologies to implement 3D TV succeeding HDTV, multi-viewpoint image display technique is rising as an important issue, which can display the viewpoint-dependent images corresponding to viewer's position. This paper presents a novel method that solves too much computational overload that is main drawback of previous methods. Using down sampling technique, multiresolution EPIs are made from multi-viewpoint image set and trace lines are detected in the lowest resolution EPI. The parameters of detected trace lines are transferred to higher resolution EPIs and revised by utilizing the information of the previous resolution EPI. This procedure is iterated until orignal resolution EPI. Using the proposed method, we have achieved the reduction of computational time and the robustness to noise in comparison to previous method.

  • PDF

Three dimensional visualization of seafloor topography for the application of integrated navigation system (통합항법시스템에 적용하기 위한 3차원 해저지형의 시각화)

  • Bae, Mun-Ki;Shin, Hyeong-Il;Lee, Dae-Jae;Kang, Il-Kwon;Lee, Yoo-Won;Kim, Kwang-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • The 3D visualization of seafloor topography(ST) was realized to discuss the effective use by the 3D visualization of ST on the integrated navigation system(INS) for fishing boat. The software was to actually display the 3D visualization of ST using triangular irregular network, helical hyperspatial codes and stereo projection. The INS for fishing boat which applied the 3D visualization of ST will be utilized for safety voyage and the effective fishing work on the fishing ground.

Automatic Stereo Matching for Auto-stereoscopic 3D display (무안경식 3D 디스플레이를 위한 자동 스테레오 정합)

  • Choi, Ho Yeol;Park, Jiho;Kim, Y.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.140-141
    • /
    • 2012
  • 최근 영상분야의 키워드는 초고품질화, 초실감화, 스마트화로 대표될 수 있다. 그 중에서도 무안경식 3D는 초실감화를 이루기 위한 핵심응용분야 중 하나이다. 하지만 무안경식 3D 단말기가 성공적으로 보급되기 위해서는 연구되어야 할 분야가 여전히 존재한다. 그 중에서도 본 논문에서는 고화질의 무안경식 3D 스마트 콘텐츠 제작에 필요한 자동 스테레오 정합 기법을 제안하였다. 이전까지 연구된 변이지도 추출을 위한 알고리즘은 전역적 최적화 방법을 사용할 시 영상의 해상도와 깊이 정도에 따른 연산량의 증가로 많은 수행시간이 요구되었다. 또한 좌/우 영상의 intensity 정보만으로는 정확한 변이지도 추출이 어렵다는 한계점이 존재하였다. 이러한 이유로 본 논문에서는 스트림 영상에서 프레임 간의 정보를 이용하여 신뢰지도와 경계정보를 생성하였으며 belief propagation 스테레오 정합 방법을 이용하여 고화질의 정확한 변이지도를 추출하였다. 또한, 알고리즘의 연산량에 대한 문제를 해결하기 위한 고속화 방안으로, 최근 많은 연구가 이루어지고 있는 GPU(graphics processing units) 를 이용한 병렬처리를 연구하였다. 마지막으로 연구결과의 신뢰성을 향상하기 위하여 다양한 데이터를 이용한 실험을 통해 고화질의 영상정보를 고속으로 추출할 수 있음을 확인하였다.

  • PDF

Stereo Video Coding with Spatio-Temporal Scalability for Heterogeneous Collaboration Environments (이질적인 협업환경을 위한 시공간적 계위를 이용한 스테레오 비디오 압축)

  • Oh Sehchan;Lee Youngho;Woo Woontack
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1150-1160
    • /
    • 2004
  • In this paper, we propose a new 3D video coding method for heterogeneous display systems and network infrastructure over enhanced Access Grid (e-AG) using spatio-temporal scalability defined in MPEG-2. The proposed encoder produces several bit-streams for providing temporally and spatially scalable 3D video service. The generated bit-streams can be nelivered with proper spatio-temporal resolution according to network bandwidths and processing speeds, visualization capabilities of client systems. The functionality of proposed spatio-temporal scalability can be exploited for construction of highly scalable 3D video service in heterogeneous distributed environments.

Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP (최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성)

  • Shin, Seok-Hyun;Hwang, Do-Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2012
  • Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.