• Title/Summary/Keyword: 3D Space

Search Result 3,629, Processing Time 0.038 seconds

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

1-D Deep Resistivity Structure of the Korean Peninsula Using Magnetotelluric(MT) Data (MT 자료를 이용한 한반도의 심부 1차원 전기비저항 구조 연구)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Chun-Ki;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • We examined the regional 1-D deep resistivity structure of the Korean Peninsula using MT data acquired at seven sites located in the Kyongsang Basin and Kyonggi Massif. At the sites located in the Kyongsang Basin, surrounding sea distorts observed MT response and hence this distortion, so called "sea effect", is corrected using an iterative tensor stripping method. The 1-D layered inversion results for the seven MT sites reveal 4 layered structure, which is composed of 1) near surface layer, 2) upper crust, 3) lower crust and upper mantle, and 4) asthenosphere from the surface downward. Conrad interface, which is a boundary between upper and lower crust, is distinctly identified beneath all the MT sites. Conrad interface depth is estimated to about be 17km in the Kyongsang Basin and about 12km in the Kyonggi Massif, while the upper crust of the Kyongsang Basin is about 5 times more resistive than that of the Kyonggi Massif. Finally, asthenosphere is inferred to exist below a depth of approximately 100km with a resistivity of 200-300 ohm-m.

A Fundamental Study about a Quality Certification of 3D Precision Indoor Geospatial Information - Focused on Yeongdeungpo Station - (3차원 정밀 실내공간정보 품질인증 방안에 관한 기초연구 - 영등포역을 중심으로-)

  • Lee, Ki Sung;Jeong, In Hun;Choi, Yun Soo;Kim, Sang Bong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.3-14
    • /
    • 2015
  • As buildings in the downtown area, such as the complex building connected to the skyscraper and the underground facility, have become large and complex, the range of target domain of the space information service is rapidly expanding to the interior space; it is considered that this change will create various demands of service such as the indoor geospatial information base safety, the management of facility, and the interior navigation in the future, along with spread of mobile devices and development of IT technology. As for the indoor geospatial information, however, there is no certification standard of the established indoor geospatial information data quality, so preparing the certification standard is urgent. Thus, this study reviewed foreign and domestic research cases and prepared measures for quality verification of the indoor geospatial information to conduct a verification test of the Yeongdeungpo Station indoor geospatial information, established in 2014. As a result, through the verification test of the method and standard of the indoor geospatial information quality certification suggested by this research, it was identified that the uniform and higher quality data could be classified, and the types of error high frequently occurring could be investigated. These results are expected to be utilized as the basic data for establishing quality certification system for the indoor geospatial information in the future.

The Nonlinear Behavior Characteristics of the 3D Mixed Building Structures with Variations in the Lower Stories (입체 복합구조물의 하부골조 층수 변화에 따른 비선형 거동특성)

  • 강병두;전대한;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • The upper wall-lower frame structures(mixed building structures) are usually composed of shear wall structure in the upper part of structure which is used as residential space and frame structure in the lower part of structure which is used as commercial space centering around the transfer system in the lower part of structure. These structures are characteristics of stiffness irregularity, mass irregularity, and vertical geometric irregularity. The purpose of this study is to investigate the nonlinear response characteristics and the seismic capacity of mixed building structures when the number of stories in the lower frame is varied. The conclusions of this study are following. 1) As the result of push-over analysis of structure such as roof drift(i.e. roof displacement/structural height) and base shear coefficient, when the stories of lower frame system are increased, base shear coefficient is decreased, but roof drift is increased. 2) According to an increase in stories of the lower fame, story drift and ductility ratio of upper wall system are decreased and behavior of upper wall system is closed to elastic. 3) When the stories of lower frame system are increased, the excessive story drift is concentrated on the lower frame system.

A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures (막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Jeong-Sub;Jeon, Seung-Chan;Jeon, Sang-Joon;Park, Byung-Soo;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1003-1022
    • /
    • 2018
  • In the current work, a series of three-dimensional finite element analyses were carried out to understand the behaviour of a pre-existing single pile to the changes of the tunnel face pressures when a shield TBM tunnel passes underneath the pile. The numerical modelling analysed the results by considering various face pressures (25~100% of the in-situ horizontal stress prior to tunnelling at the tunnel springline). In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses have been thoroughly analysed for different face pressures. The head settlements of the pile with the maximum face pressure decreased by about 44% compared to corresponding settlement with the minimum face pressure. Furthermore, the maximum axial force of the pile developed with the minimum face pressure. The tunnelling-induced axial pile force at the minimum face pressure was found to be about 21% larger than that with the maximum face pressure. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures. In addition, the influence of the piles and the ground was analysed by considering characteristics of the soil deformations. Also, the apparent safety factor of the piles are substantially reduced for all the analyses conducted in the current simulation, resulting in severe effects on the adjacent piles. Therefore, the behaviour of the piles, according to change the face pressures, has been extensively examined and analysed by considering the key features in great details.

A study on platform-based preliminary design guidelines associated with the behaviour of piles to adjacent tunnelling (터널근접시공에 의한 말뚝의 거동을 고려한 플랫폼 기반의 예비 설계 가이드라인에 대한 연구)

  • Jeon, Young-Jin;Lee, Gyu-Seol;Lee, Jae-Cheol;Batbuyan, Chinzorig;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.129-151
    • /
    • 2022
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of piles when the adjacent tunnelling passes underneath grouped piles with a reinforced pile cap. In the current study, the numerical analysis studied the computed results regarding the ground reinforcement condition between the tunnel and pile foundation. In addition, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the relative displacements have been thoroughly analysed, and the IoT platform based preliminary design guidelines were also presented. The pile head settlements of the nearest pile from the tunnel without the ground reinforcement increased by about 70% compared to the farthest pile from the tunnel with the maximum level of reinforcement. The quality management factor data of the piles were provided as API (Application Programming Interface) of various forms by the collection and refinement. Hence it has been shown that it would be important to provide the appropriate API by defining the each of data flow process when the data were created. The behaviour of the grouped piles with the pile cap, depending on the amount of ground reinforcement, has been extensively analysed, and the IoT platform regarding the quality management of piles has been suggested.

Development of 3D Underground Information Construction and Visualization System Based on IUGIM (지하공간통합지도 기반 3차원 지하정보 구축 및 가시화시스템 개발)

  • Kang, Kyung Nam;Kim, Wooram;Hwang, Seung Hyun;An, Joon Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • Due to recent underground space accidents, are a frequent occurence in Korea, the government established the basic plan for the construction of the IUGIM (Integrated Underground Geospatial Information Map) in 2015 as a measure for safety management of underground spaces. The development of IUGIM was partially completed as of 2021. The underground space management entity and related organizations are utilizing it. This study is being carried out as part of a plan to improve the usability of IUGIM, and to build a visualization system that compares real-time field data with stored data. A system, equipped with a visualization function for borehole data and 6 types of underground facilities built and managed on IUGIM; a tool capable of comparative analysis with real-time data measured in the field, is being built. The 6 types of underground facilities are water supply pipe, sewage pipe, power pipe, gas pipe, communication pipe, and heating pipe. The completed system was demonstrated at three locations in Seocho-gu, Gangnam-gu in Seoul. The field demonstration was carried out by accessing the mobile center and downloading IUGIM data, visualizing IUGIM data (surface creation, borehole information, underground facilities), and visualizing the GPR(Ground Penetrating Radar)-based data acquired at the field. As a result of the empirical results of IUGIM data and GPR-based field data, it was judged to be suitable. As a result of this study, it is judged that it can be helpful for safe construction at the excavation site.

The Three Dimensional Analysis on Nasal Airway Morphology in Class III Malocclusion (골격성 III급 부정교합자의 Nasal Airway 형태에 관한 3차원적 분석 연구)

  • Kim, Moon-Hwan;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.389-403
    • /
    • 2008
  • In Angle's Class III malocclusion, which has higher incidence in Korean than Western, depressed midfacial profile with protruded lower lips and mandible may give rise to many functional, esthetic, psychological, social problems. Due to the different malocclusion incidence according to racial differences, many previous studies focused on the relationship between Class II malocclusion and nasal airway obstruction. Previous studies used lateral cephalography which has limitations of 2 dimensional image with projection error and identification error. Therefore, the purpose of this study was to analyze morphologic differences in the nasal airway between normal occlusion and Angle's Class III malocclusion patients using 3-dimensional facial computed tomography. Thirteen normal occlusion(7 men and 6 women) and sixteen skeletal Class III(7 men and 9 women) patients were selected and 3-dimensional facial computed tomography taking was performed. Comparison between two group in volume and sectional area of nasal airway were carried out. The results were followed. 1. In the comparison of absolute nasal airway volume, oropharyngeal space of experimental group were larger than control group but there are no significant difference in other. 2. In the comparison of relative nasal airway volume, oropharyngeal space of experimental group were larger than control group but there are no significant difference in other. 3. In the oropharyngeal space width on frontal and lateral view, the similar tendency was revealed between two groups. 4. In the lateral curvature of nasal airway, the similar tendency was revealed between two groups.

Analysis of Light Transmittance according to the Array Structure of Collagen Fibers Constituting the Corneal Stroma (각막실질 콜라겐섬유의 배열구조에 따른 광투과율 분석)

  • Lee, Myoung-Hee;Kim, Young-Chul
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2018
  • Purpose : The size and regular array of the collagen fibers in the corneal stroma have very close correlation with transparency. Simulation was carried out to investigate the change of light transmittance according to the array structure and collagen fiber layer thickness. Methods : The collagen fibers in corneal stroma were arranged in regular hexagonal, hexagonal, square and random shapes with OptiFDTD simulation software, and the light transmittance was analyzed. In square array, the light transmittance according to the density change was confirmed by when the number of collagen fibers in the simulation space was the same and the light transmittance was examined when the number and density of collagen fibers were changed. Results : When the number of collagen fibers is the same, the density becomes smaller and the thickness of the fibrous layer becomes thicker in order of arrangement of square, regular hexagonal, random and hexagonal. As a result of measuring the light transmittance by changing the array structure, the light transmittance measured at the detector at the same position was almost similar regardless of the array structure. In the detectors D0, D1, D2 and D3, the maximum transmittance is shown in square, hexagonal and square, regular hexagonal and regular hexagonal array structure, and the minimum transmittance is hexagonal, random, hexagonal and square, and square array structure. However, the difference between the maximum transmittance and the minimum transmittance was almost the same within 1%. When the number of collagen fibers was the same, the light transmittance of the rectangular array structure decreased with increasing fiber layer thickness. And as the thickness increased, the light transmittance decreased more when the number of collagen fibers decreased. Conclusion : Even though the collagen array structure changed, the light transmittance is almost similar regardless of the arrangement structure. However, as the array structure was changed, the thickness of the collagen fiber layer changed, and as the thickness increased, the light transmittance decreased. In other words, the transparency of the corneal stroma is more closely related to the thickness of the fibrous layer than the array of collagen fibers.

Gas Transport Properties of Crosslinked Polyimide Membranes Induced by Aliphatic Diamines with Different Chain Length (사슬 길이가 다른 지방족 디아민으로 가교된 폴리이미드 분리막의 기체 투과 특성)

  • Lee, Hye Rim;Lee, Jung Moo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.450-459
    • /
    • 2013
  • 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) based polyimide (PI) were crosslinked with 1,2-Diaminoethane (DAE) and 1,6-Diaminohexane (DAH) to enhance gas transport properties. Fourier transform infrared (FT-IR) studies show that imide groups were converted into amide groups during crosslinking process. Thermogravimetric analysis (TGA) results indicate that the degradation temperature of crosslinked PI membranes decreased after crosslinking. This is due to degradation of alkyl group in crosslinking agent. The d-space of crosslinked PI membranes decreased with increasing crosslinking time. The ideal permeability for $CH_4$, $N_2$, $O_2$, and $CO_2$ decreased after crosslinking and the ideal permeability of crosslinked PI membranes induced by DAH is larger than that by DAE. In contrast, the permselectivity of $CO_2/CH_4$, $CO_2/N_2$ and $O_2/N_2$ increased during crosslinking. For the gas pair of $CO_2/CH_4$, the maximum increment is about 39.5% after 6 minutes of DAE crosslinking. Also, that of $O_2/N_2$ gas pair is about 20.5% after 6 minutes of DAE crosslinking. According to these result, DAE is more suitable for enhanced permselectivity than DAH. On the contrary, DAE is not useful for $CO_2/N_2$ separation due to reduction in $CO_2/N_2$ permselectivity after 3 minutes DAE crosslinking.