• Title/Summary/Keyword: 3D Simulation system

Search Result 1,763, Processing Time 0.031 seconds

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Numerical simulation of the change in groundwater level due to construction of the Giheung Tunnel (기흥터널 건설에 따른 지하수 변화 수치모델링)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Ki-Seok;Kim, Nam-Hoon;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2010
  • We performed numerical simulations of the excavation of an underground structure (the Giheung Tunnel) in order to evaluate the rate of groundwater flow into the structure and to estimate the groundwater level around the structure. The tunnel was constructed in Precambrian bedrock in Gyeonggi Province, South Korea. Geological and electrical resistivity data, as well as hydraulic test data, were used for the numerical modeling. The modeling took into account the strike-slip faults that cross the southern part of Giheung Tunnel, as these structures influence the discharge of groundwater into the tunnel. The transient modeling estimated a groundwater flow rate into the tunnel of $306\;m^3$/day, with a grout efficiency of 40%, yielding good agreement between the calculated change in groundwater level (6.20 m) and that observed (6.30 m) due to tunnel excavation.

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.

Development of the Standard Blood Inventory Level Decision Rule in Hospitals (병원의 표준 혈액재고량 산출식 개발)

  • Kim, Byoung-Yik
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.1 s.23
    • /
    • pp.195-206
    • /
    • 1988
  • Two major issues of the blood bank management are quality assurance and inventory control. Recently, in Korea blood donation has gained popularity increasingly to allow considerable improvement of the quality assurance with respect to blood collection, transportation, storage, component preparation skills and hematological tests. Nevertheless the inventory control, the other issue of blood bank management, has been neglected so far. For the supply of blood by donation barely meets the demand, the blood bank policy on the inventory control has been 'the more the better.' The shortage itself by no means unnecessitate inventory control. In fact, in spite of shortage, no small amount of blood is outdated. The efficient blood inventory control makes it possible to economize the blood usage in the practice of state-of-the-art medical care. For the efficient blood inventory control in Korean hospitals, this tudy is to develop formulae forecasting the standard blood inventory level and suggest a set of policies improving the blood inventory control. For this study informations of $A^+$ whole bloods and packed cells inventory control were collected from a University Hospital and the Central Blood Bank of the Korean Red Cross. Using this informations, 1,461 daily blood inventory records were formulated.48 varieties of blood inventory control environment were identified on the basis of selected combinations of 4 inventory control variables-crossmatch, transfusion, inhospital donation and age of bloods from external supply. In order to decide the optimal blood inventory level for each environment, simulation models were designed to calculate the measures of performance of each environment. After the decision of 48 optimal blood inventory levels, stepwise multiple regression analysis was started where the independent variables were 4 inventory control variables and the dependent variable was optimal inventory level of each environment. Finally the standard blood inventory level decision rule was developed using the backward elimination procedure to select the best regression equation. And the effective alternatives of the issuing policy and crossmatch release period were suggested according to the measures of performance under the condition of the standard blood inventory level. The results of this study' were as follows ; 1. The formulae to calculate the standard blood inventory level($S^*$)was $S^*=2.8617X(d)^{0.9342}$ where d is the mean daily crossmatch(demand) for a blood type. 2. The measures of performace - outdate rate, average period of storage, mean age of transfused bloods, and mean daily available inventory level - were improved after maintenance of the standard inventory level in comparison with the present system. 3. Issuing policy of First In-First Out(FIFO) decreased the outdate rate, while Last In-First Out(LIFO) decreased the mean age of transfused bloods. The decrease of the crossmatch release period reduced the outdate rate and the mean age of transfused bloods.

  • PDF

Analysis of Surface Plasmon Resonance on Periodic Metal Hole Array by Diffraction Orders

  • Hwang, Jeong-U;Yun, Su-Jin;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.176-177
    • /
    • 2013
  • Surface plasmon polaritons (SPPs) have attracted the attention of scientists and engineers involved in a wide area of research, microscopy, diagnostics and sensing. SPPs are waves that propagate along the surface of a conductor, usually metals. These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of conductor. In this interaction, the free electrons respond collectively by oscillating in resonance with the light wave. The resonant interaction between the surface charge oscillation and the electromagnetic field of the light constitutes the SPPs and gives rise to its unique properties. In this papers, we studied theoretical and experimental extraordinary transmittance (T) and reflectance (R) of 2 dimensional metal hole array (2D-MHA) on GaAs in consideration of the diffraction orders. The 2d-MHAs was fabricated using ultra-violet photolithography, electron-beam evaporation and standard lift-off process with pitches ranging from 1.8 to $3.2{\mu}m$ and diameter of half of pitch, and was deposited 5-nm thick layer of titanium (Ti) as an adhesion layer and 50-nm thick layer of gold (Au) on the semiinsulating GaAs substrate. We employed both the commercial software (CST Microwave Studio: Computer Simulation Technology GmbH, Darmstadt, Germany) based on a finite integration technique (FIT) and a rigorous coupled wave analysis (RCWA) to calculate transmittance and reflectance. The transmittance was measured at a normal incident, and the reflectance was measured at variable incident angle of range between $30^{\circ}{\sim}80^{\circ}$ with a Nicolet Fourier transmission infrared (FTIR) spectrometer with a KBr beam splitter and a MCT detector. For MHAs of pitch (P), the peaks ${\lambda}$ max in the normal incidence transmittance spectra can be indentified approximately from SP dispersion relation, that is frequency-dependent SP wave vector (ksp). Shown in Fig. 1 is the transmission of P=2.2 um sample at normal incidence. We attribute the observation to be a result of FTIR system may be able to collect the transmitted light with higher diffraction order than 0th order. This is confirmed by calculations: for the MHAs, diffraction efficiency in (0, 0) diffracted orders is lower than in the (${\pm}x$, ${\pm}y$) diffracted orders. To further investigate the result, we calculated the angular dependent transmission of P=2.2 um sample (Fig. 2). The incident angle varies from 30o to 70o with a 10o increment. We also found the splitting character on reflectance measurement. The splitting effect is considered a results of SPPs assisted diffraction process by oblique incidence.

  • PDF

Development of unified communication for marine VoIP service (해상 VoIP 서비스를 위한 통합 커뮤니케이션 기술 개발)

  • Kang, Nam-seon;Yim, Geun-wan;Lee, Seong-haeng;Kim, Sang-yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.744-753
    • /
    • 2015
  • This paper presents the results of research on developing marine unified communications to provide VoIP service based on marine satellites. With the recent popularity of smart-phones and other mobile devices, the demand for Internet-based wired and wireless unified technology has been growing in marine environments, and increasing interest is being directed to VoIP products and service models with high price competitiveness and the ability to deliver a variety of services. In this regard, this research designed three instruments, developed their unit modules, and verified their performances. These three instruments included the following: (1) a marine VoIP module equipped with an analogue gateway that can be linked to the existing devices used in vessels, which is more than 80% smaller than that of a land system; (2) a text/voice/video engine for marine satellite communications that runs on technology that minimizes communication data usage, which is a core technology for a marine VoIP service; and (3) a unified communication service that can support multilateral cloud-based message conversations, telephone number-based call functions, and voice/video calling between a private space in a ship and shore.

Proposal of Early-Warning Criteria for Highway Debris Flow Using Rainfall Frequency (2): Criteria Adjustment and Verification (확률 강우량을 이용한 고속도로 토석류 조기경보기준 제안 (2) : 기준의 조정 및 적용성 검토)

  • Choi, Jaesoon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.15-24
    • /
    • 2019
  • In the previous study, the rainfall data of 1 hour, 6 hours and 3 days were used as the rainfall criterion according to the grade to trigger the debris flow in the highway area, using the rainfall data of Gangwon area and the rainfall time-series data at the spot where the debris flow occurred. In this study, we propose an early warning criterion of the highway debris flow triggering through appropriate combination of three rainfall criteria selected through previous studies and adjustments of rainfall criterion in the highway debris flow triggering. In addition, simulations were conducted using the time-series rainfall data of 2010~2012, which had a large amount of precipitation for the five sites where debris flows occurred in 2013. As a result of the study, the criteria for the early warning of highway unsteadiness on the highway were prepared. In case of the grade-based adjustment, it is preferable to apply the unified rating to the grade B. Also, if the fatigue of the monitoring is not a problem, adjusting it to A or S may be a way to positively cope with the occurrence of highway debris flow.

Application of GIS to Select Viewpoints for Landscape Analysis (경관분석 조망점 선정을 위한 GIS의 적용방안)

  • Kang, Tae-Hyun;Leem, Youn-Taik;Lee, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.101-113
    • /
    • 2013
  • The concern on environmental quality makes the landscape analysis more important than before ever. For the landscape analysis, selection of viewpoint is one of most important stage. Because of its subjectiveness, the conventional viewpoint selection method often missed some viewpoints of importance. The purpose of this study is to develop a viewpoint selection method for landscape analysis using GIS data and techniques. During the viewpoint selection process, spatial and attribute data from several GIS systems were hired. Query and overlay methods were mainly adapted for analysis to find out meaningful viewpoints. The 3D simulation analysis on DEM(Digital Elevation Model) was used for every selected viewpoint to examine wether the view target is screened out or not. Application study at a sample site showed some omissions of good viewpoints without any screening. It also exhibited the possibility to reduce time and cost for the viewpoint selection process of landscape analysis. For the progress of applicability, GIS data analysis process have to be improved and more modules such as automatic screening analysis system on selected viewpoint have to be developed.

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.