• Title/Summary/Keyword: 3D SLAM

Search Result 50, Processing Time 0.023 seconds

A Study of Matchmoving on Digital Compositing (디지털 합성에서 매치무빙에 관한 연구)

  • Lee, Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.231-232
    • /
    • 2022
  • 본 논문에서는 비디오 시퀀스 내에서 카메라의 움직임을 추적하고, 추적 데이터를 기반으로 2D 영상에 3D CG 객체를 추가하는 방법을 소개한다. 해당 객체가 시점을 고려한 장면 내의 피사체로써 간주되기 위해서는 3차원 가상공간 내에서 피사체의 위치를 기반으로 장면 내 기준 평면을 구성하는 점들과 카메라의 기저 축 좌표를 조정한다. 영상제작 현장에서 활용되는 소프트웨어에서 수작업으로 진행되는 과정을 살펴봄으로써 매치 무빙기법이 증강현실과 광학기반의 SLAM 등과 같은 다양한 응용분야에서의 활용을 고려할 수 있겠다.

  • PDF

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Object Detection of AGV in Manufacturing Plants using Deep Learning (딥러닝 기반 제조 공장 내 AGV 객체 인식에 대한 연구)

  • Lee, Gil-Won;Lee, Hwally;Cheong, Hee-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-43
    • /
    • 2021
  • In this research, the accuracy of YOLO v3 algorithm in object detection during AGV (Automated Guided Vehicle) operation was investigated. First of all, AGV with 2D LiDAR and stereo camera was prepared. AGV was driven along the route scanned with SLAM (Simultaneous Localization and Mapping) using 2D LiDAR while front objects were detected through stereo camera. In order to evaluate the accuracy of YOLO v3 algorithm, recall, AP (Average Precision), and mAP (mean Average Precision) of the algorithm were measured with a degree of machine learning. Experimental results show that mAP, precision, and recall are improved by 10%, 6.8%, and 16.4%, respectively, when YOLO v3 is fitted with 4000 training dataset and 500 testing dataset which were collected through online search and is trained additionally with 1200 dataset collected from the stereo camera on AGV.

Simulation based Target Geometry Determination Method for Extrinsic Calibration of Multiple 2D Laser Scanning System (다중 2D 레이저 스캐너 시스템의 외부 표정요소 캘리브레이션을 위한 시뮬레이션 기반 표적 배치 결정 기법)

  • Ju, Sungha;Yoon, Sanghyun;Park, Sangyoon;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.443-449
    • /
    • 2018
  • Acquiring indoor point cloud, using SLAM (Simultaneous Localization and Mapping) based mobile mapping system, is an element progress for development of as-build BIM (Building Information Model) for the maintenance of the building. In this research we proposed a simulation-based target geometry determination for extrinsic calibration of multiple 2D laser scanning mobile system. Four different types of calibration sites were designed: (1) circle type; (2) rectangle type; (3) double circle type; and (4) double rectangle type. Based on the measurement values obtained from each simulated calibration site geometry, least squares solution based extrinsic calibration was derived. As a result, the rectangle type geometry is most suitable for extrinsic calibration of this system. Also, correlation values between extrinsic calibration parameters were high, and calibration results were distinct according to the calibration sites.

Development of Remote Measurement Method for Reinforcement Information in Construction Field Using 360 Degrees Camera (360도 카메라 기반 건설현장 철근 배근 정보 원격 계측 기법 개발)

  • Lee, Myung-Hun;Woo, Ukyong;Choi, Hajin;Kang, Su-min;Choi, Kyoung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.157-166
    • /
    • 2022
  • Structural supervision on the construction site has been performed based on visual inspection, which is highly labor-intensive and subjective. In this study, the remote technique was developed to improve the efficiency of the measurements on rebar spacing using a 360° camera and reconstructed 3D models. The proposed method was verified by measuring the spacings in reinforced concrete structure, where the twelve locations in the construction site (265 m2) were scanned within 20 seconds per location and a total of 15 minutes was taken. SLAM, consisting of SIFT, RANSAC, and General framework graph optimization algorithms, produces RGB-based 3D and 3D point cloud models, respectively. The minimum resolution of the 3D point cloud was 0.1mm while that of the RGB-based 3D model was 10 mm. Based on the results from both 3D models, the measurement error was from 10.8% to 0.3% in the 3D point cloud and from 28.4% to 3.1% in the RGB-based 3D model. The results demonstrate that the proposed method has great potential for remote structural supervision with respect to its accuracy and objectivity.

Autonomous Flight System of UAV through Global and Local Path Generation (전역 및 지역 경로 생성을 통한 무인항공기 자율비행 시스템 연구)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, a global and local flight path system for autonomous flight of the UAV is proposed. The overall system is based on the ROS robot operating system. The UAV in-built computer detects obstacles through 2-D Lidar and generates real-time local path and global path based on VFH and Modified $RRT^*$-Smart, respectively. Additionally, a movement command is issued based on the generated path on the UAV flight controller. The ground station computer receives the obstacle information and generates a 2-D SLAM map, transmits the destination point to the embedded computer, and manages the state of the UAV. The autonomous UAV flight system of the is verified through a simulator and actual flight.

A Study on the Efficient 3D Scanning Method for Digital Twin Configuration in Construction Site (건설현장의 디지털 트윈 구성을 위한 효율적인 3D 스캐닝 방법에 관한 연구)

  • Kim, Seong-Hun;Kim, Tae-Han;Eom, Ire;Won, Jong-Chul
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.39-51
    • /
    • 2022
  • 3D scan technology can utilize real spatial information as it is in virtual space, so it can be usefully used in various fields such as reverse engineering of buildings and process management. Recently, with the development of ICT technology, more precise scan data can be obtained, and scan processing time has also been greatly reduced. In addition, the combination of software and scanning equipment used in 3D scanning technology is very diverse, and results are very different depending on which technology is used. Accordingly, there is a problem that it is difficult for a user who has no experience in 3D scanning technology to determine which technology and equipment should be used to obtain good results. In this study, 3D scan technologies mainly used at home and abroad are investigated, classified, and tested at actual construction sites to suggest considerations and suitable 3D scan methods when using 3D scans in construction sites. The test results were analyzed to evaluate the time it takes to scan, the final quality, and the user's convenience according to each technology method.

3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments (복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘)

  • Boseong Kim;Seungwook Lee;Jaeyong Park;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.

Real-time Simultaneous Localization and Mapping (SLAM) for Vision-based Autonomous Navigation (영상기반 자동항법을 위한 실시간 위치인식 및 지도작성)

  • Lim, Hyon;Lim, Jongwoo;Kim, H. Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.483-489
    • /
    • 2015
  • In this paper, we propose monocular visual simultaneous localization and mapping (SLAM) in the large-scale environment. The proposed method continuously computes the current 6-DoF camera pose and 3D landmarks position from video input. The proposed method successfully builds consistent maps from challenging outdoor sequences using a monocular camera as the only sensor. By using a binary descriptor and metric-topological mapping, the system demonstrates real-time performance on a large-scale outdoor dataset without utilizing GPUs or reducing input image size. The effectiveness of the proposed method is demonstrated on various challenging video sequences.

A Study on the Effective Preprocessing Methods for Accelerating Point Cloud Registration

  • Chungsu, Jang;Yongmin, Kim;Taehyun, Kim;Sunyong, Choi;Jinwoo, Koh;Seungkeun, Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.111-127
    • /
    • 2023
  • In visual slam and 3D data modeling, the Iterative Closest Point method is a primary fundamental algorithm, and many technical fields have used this method. However, it relies on search methods that take a high search time. This paper solves this problem by applying an effective point cloud refinement method. And this paper also accelerates the point cloud registration process with an indexing scheme using the spatial decomposition method. Through some experiments, the results of this paper show that the proposed point cloud refinement method helped to produce better performance.