Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.
As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.
3D-QSAR analyses by CoMFA and CoMSIA were conducted on a series of thiazole and triazole analogues with respect to their antifungal activities against Microsporum gypseum. A total of twenty analogues were used for the derivation of the 3D-QSAR models (training set). Thesuperposition of the compounds was performed by applying the FlexS with shape-based screening method. (omitted)
We investigate a series of synthesized ${\beta}$-methoxyacrylate analogues for their 3D QSAR & HQSAR against Magnaporthe grisea (Rice Blast Disease). We perform the three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) studies, using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) procedure. In addition, we carry out a two-dimensional Quantitative Structure-Activity Relationship (2D-QSAR) study, using the Hologram QSAR (HQSAR). We perform these studies, using 53 compounds as a training set and 10 compounds as a test set. The predictive QSAR models have conventional $r^2$ values of 0.955 at CoMFA, 0.917 at CoMSIA, and 0.910 at HQSAR respectively; similarly, we obtain cross-validated coefficient $q^2$ values of 0.822 at CoMFA, 0.763 at CoMSIA, and 0.816 at HQSAR, respectively. From these studies, the CoMFA model performs better than the CoMSIA model.
Holographic quantitative structure-activity relationships (HQSAR) is a useful tool to correlates structures with their biological activities. HQSAR is a two dimensional (2D) QSAR methodology, which generates QSAR equations through 2D fingerprint and correlates it with biological activity. Here, we report a 2D-QSAR model for a series of fifty-one 3,4-dihydroxychalcones derivatives utilizing HQSAR methodology. We developed HQSAR model with 6 optimum numbers of components (ONC), which resulted in cross-validated correlation coefficient ($q^2$) of 0.855 with 0.283 standard error of estimate (SEE). The non-cross-validated correlation coefficient (r2) with 0.966 indicates the model is predictive enough for analysis. Developed HQSAR model was binned in to a hologram length of 257. Atomic contribution map revealed the importance of dihydroxy substitution on phenyl ring.
To predict and design of new potent insecticidal compounds, the two dimensional quantitative structure-activity relationships (2D-QSARs) and molecular hologram quantitative structure-activity relationships (HQSARs) between the various physicochemical parameters as descripters of N'-phenyl-N-methylformamidine analogues (1-22) and their insecticidal activity against the two spotted spider mite (Tetranychus urticae) were discussed quantitatively. From 2D-QSAR models (1 & 3), the width ($B_2$) of $R_3$-group as sterically factor and optimal total dipole moment (TDM=2.025D) of $R_4$-group were mainly influenced to increase the activity. Therefore, the activities were depend upon the $R_3$- and $R_4$-groups. Particularly, it is predicted that the activity of newly designed potent compound (PI; $EC_{50}$=0.516 ppm) by 2D-QSAR models (3) and HQSAR model F2 was about 34.3 fold higher than that of the commercialized insecticide, Amitraz ($EC_{50}$=17.7 ppm).
To search for a molecular design of a new breast cancerous inhibitory active compound, 2D-QSAR and HQSAR between the substituents of flavopiridol analogues as substrates and their breast cancerous inhibitory activities against MCF-7 cell were analyzed and discussed quantitatively. It was found that the dispersion with molecule and steric hindrance with substituents will have a tremendous impact on the inhibitory activities from the 2D-QSAR model (1). Also, MR constant is better than that of MS constant as animportant factor. The inhibitory activities from 2D-QSAR model (2) were dependent upon the optimum MR constant (MR = 126 $Cm^3/mol$). Optimized HQSAR model (V) exhibited the best predictability of the inhibitory activities based on the cross-validated $r^2_{cv}$($q^2$= 0.583) and non-cross-validated conventional coefficient ($r^2_{ncv}$= 0.982). From the contribution maps, the inhibitory activity by the imino group on $C_9$ atom was higher than that of the hydroxyl group of $C_8$ atom on the A ring in molecule. Therefore, we can confirm that the dispersion by substituents in molecule is the most important factor in inhibitory activities against MCF-7 cell.
The two dimensional quantitative structure-activity relationships (2D-QSARs) models concerning the binding affinity constants ($p[Od.]_{50}$) between 2-cyclohexyltetrahydropyrane and 2-cyclohexyltetrahydrofurane analogues as substrates, and bovine odorant binding protein (bOBP) as receptor were derived by multiple regression analyses method and discussed. The statistical quality of the optimized 2D-QSAR model (5) was good (r=0.907). From the model, the binding affinity constants ($p[Od.]_{50}$) were dependent upon the optimal value ($(TL)_{opt.}$=2.737) of total lipole (TL) of substrate molecules. Based on these findings, the high active compounds predicted by optimized 2D-QSAR model (5) were 2-(dimethylcyclohexyl)tetrahydropyrane molecule and their isomer molecules. The binding affinity constants regarding bOBP of the tetrahydrofuryl-2-yl family compounds were dependent upon the hydrophobicity (logP) of whole substrate molecules. In any case of porcine odorant-binding proteins (pOBP), the constants were dependent upon the hydrophobicity (${\pi}x={\log}P_X-{\log}P_H$) of substituents (R) in substrate molecules. Also, from the optimal values of hydrophobic constant, the hydrophobicity for bOBP influenced ca. twice time bigger (bOBP>pOBP) than that for pOBP.
To search a new anti-depressant agents against para-chloroamphetamine-induced excitation, three dimensional quantitative-structure relationships (3D-QSAR) models between structure of 3a,4-dihydro-3H-[1]-benzopyronao[4,3]isoxazoles (1-30) and thieir inhibitory activity against para-chloroamphetamine-induced excitation were performed and discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. From these basis on the findings, the optimized CoMSIA-2F model ($q^2$=0.793 and $r^2$=0.952) showed the best statistical results. And also, it is found that the para-chloroamphetamine inhibitory activity from the optimized CoMSIA-2F model was dependent on steric field (35.2%) and electrostatic field (64.8%) of tricyclic isoxazoles. Particularly, it is predicted that the inhibitory activity against para-chloroamphetamine-induced excitation will be able to increase by the designed compounds from the CoMSIA-2F model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.