• Title/Summary/Keyword: 3D Printing condition

Search Result 46, Processing Time 0.025 seconds

Stability Analysis of DMC's Block Geometry (DMC 카메라의 블록기하 안정성 분석)

  • Lee, Jae One;Lee, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.771-779
    • /
    • 2009
  • Digital topographical maps used for GIS DB are mainly produced by the traditional way of analogue aerial photogrammetry. Therefore, analogue photos are only available for digital mapping after preprocessing such as film developing, printing and scanning. However, digital aerial camera is able to get digital image directly without preprocessing and thus the performance and efficiency of photogrammetry are extremely increased. This study aims to investigate geometric stability of digital aerial frame camera DMC (Digital Modular Camera). In order to verify the geometric stability of digital aerial camera DMC, some different block conditions with and without cross strips, GPS/INS data and variation of GCPs are introduced in the block adjustment. The accuracy results of every block condition were compared each other by computation of residuals of exterior orientation (EO) parameters. Results of study shows that the geometric stability of the block adjustment with cross strips is increased about 30% against without cross strips. The accuracy of EO parameters of block adjustment with cross strips is also increased about 2cm for X-coordinate, 3cm for Y-coordinate, 3cm for Z-coordinate, and 6" for omega, 4" for phi and 3" for kappa.

Molecular Simulation Study on Influence of Water Film Thickness on Lubrication Characteristics (물 분자막의 두께와 윤활특성의 상관관계에 대한 분자시뮬레이션 연구)

  • Kim, Hyun-Joon;Heo, Segon
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.199-204
    • /
    • 2022
  • This paper presents a numerical investigation of the influence of water molecule thickness on frictional behavior at the nanoscale using molecular dynamics simulation. Three different models, comprising water thin films of various thicknesses, were built, and indentation and sliding simulations were performed using the models. Various normal loads were applied by indenting the Si tip on the water film for the sliding simulation to evaluate the interplay between the water thin film thickness and the normal load. The results of the simulations showed that the friction force generally increased with respect to the normal load and thickness of the water thin film. The friction coefficient varied with respect to the normal load and the water film thickness. The friction coefficient was the smallest under a moderate normal force and increased with decreasing or increasing normal loads. As the water film became thicker, the contact area between the tip and water film became larger. Under well-lubricated conditions, the friction force was proportional to the contact area regardless of the water film thickness. As the normal force increased above a critical condition, the water molecules beneath the Si tip spread out; thus, the film could not provide lubrication. Consequently, the substrate was permanently deformed by direct contact with the Si tip, while the friction force and friction coefficient significantly increased. The results suggest that a thin water film can effectively reduce friction under relatively low normal load and contact pressure conditions. In addition, the contact area between the contacting surfaces dominates the friction force.

The Noise Influence Assessment according to the Change of the Offset Type Print Machine's Power (옵셋 인쇄기계 동력규모 변화에 따른 소음 영향 평가)

  • Gu, Jinhoi;Kwon, Myunghee;Lee, Wooseok;Lee, Jaewon;Park, Hyungkyu;Kim, Samsu;Yun, Heekyung;Lee, Kyumok;Jung, Daekwan;Seo, Chungyoul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.682-686
    • /
    • 2014
  • Nowadays, the needs to revise the classification criteria for noise emission facilities have been suggested by the related industries. Because there existed many reasonable factors in the criteria regarding the noise emission facilities. And the noise emission facility classification criterion of the print machine changed from 50 HP to 100 HP in 2013. But the increasement of the noise emission facility classification criterion of the print machine can cause adverse effects like the bigger noise. So, in this paper, we measured the print machine's sound power level according to the changes of the print machine's power to assess the adverse effects. The measurement method applied with KS I ISO 9614-2(1996). The corelation between the sound power level and the power of print machines was analyzed by regression analysis. In this paper, we found that the sound power level of the print machines can increase about 1.3 dB in the condition of that the power of print machine increases from 50 HP to 100 HP. And we found that the sound power level of the print machines can increase about 1.0 dB for a increasement of 1,000 SPH(sheet per hour) of printing speed. The noise emission characteristics of print machine stuied in this paper will be useful to design the noise reduction plan in the future.

Effect of Relative Humidity, Disk Acceleration, and Rest Time on Tribocharge Build-up at a Slider-Disk Interface of HDD (HDD에서 상대습도, 디스크 가속도, 정지시간이 슬라이더-디스크 인터페이스의 마찰대전 발생에 미치는 영향)

  • Hwang J.;Lee D.Y.;Lee J.;Choa S.H.
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • In hard disk drives as the head to disk spacing continues to decrease to facilitate recording densities, slider disk interactions have become much more severe due to direct contact of head and disk surfaces in both start/stop and flying cases. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation and tribocharge build-up. The tribocharge build-up in the slider disk interface can cause ESD (electrostatic discharge) damage. In turn, ESD can cause severe melting damage to MR or GMR heads. The spindle speed of typical hard disk drives has increased in recent years from 5400 rpm to 15000 rpm and even higher speeds are anticipated in the near future. And the increasing disk velocity leads to increasing disk acceleration and this might affect the tribocharging phenomena of the slider/disk interface. We investigated the tribocurrent/voltage build-up generated in HDD, operating at increasing disk accelerations. In addition, we examined the effects with relative humidity conditions and rest time. We found that the tribocurrent/voltage was generated during pico-slider/disk interaction and its level was about $3\sim16pA$ and $0.1\sim0.3V$, respectively. Tribocurrent/voltage build-up was reduced with increasing disk acceleration. Higher humidity conditions $(75\sim80%)$ produced lower levels tribovoltage/current. Therefore, a higher tribocharge is expected at a lower disk acceleration and lower relative humidity condition. Rest time affected the charge build-up at the slider-disk interface. The degree of tribocharge build-up increased with increasing rest time.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

A study on the effects of polymer core gate sizes on thickness shrinkage rate (폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구)

  • Choi, Han-Sol;Jeong, Eui-Chul;Park, Jun-Soo;Kim, Mi-Ae;Chae, Bo-Hye;Kim, Sang-Yun;Kim, Yong-Dae;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.