• Title/Summary/Keyword: 3D Position Tracking

Search Result 155, Processing Time 0.022 seconds

Acceptance Testing and Commissioning of Robotic Intensity-Modulated Radiation Therapy M6 System Equipped with InCiseTM2 Multileaf Collimator

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • This work reports the acceptance testing and commissioning experience of the Robotic Intensity-Modulated Radiation Therapy (IMRT) M6 system with a newly released $InCise^{TM}2$ Multileaf Collimator (MLC) installed at the Yonsei Cancer Center. Acceptance testing included a mechanical interdigitation test, leaf positional accuracy, leakage check, and End-to-End (E2E) tests. Beam data measurements included tissue-phantom ratios (TPRs), off-center ratios (OCRs), output factors collected at 11 field sizes (the smallest field size was $7.6mm{\times}7.7mm$ and largest field size was $115.0mm{\times}100.1mm$ at 800 mm source-to-axis distance), and open beam profiles. The beam model was verified by checking patient-specific quality assurance (QA) in four fiducial-inserted phantoms, using 10 intracranial and extracranial patient plans. All measurements for acceptance testing satisfied manufacturing specifications. Mean leaf position offsets using the Garden Fence test were found to be $0.01{\pm}0.06mm$ and $0.07{\pm}0.05mm$ for X1 and X2 leaf banks, respectively. Maximum and average leaf leakages were 0.20% and 0.18%, respectively. E2E tests for five tracking modes showed 0.26 mm (6D Skull), 0.3 mm (Fiducial), 0.26 mm (Xsight Spine), 0.62 mm (Xsight Lung), and 0.6 mm (Synchrony). TPRs, OCRs, output factors, and open beams measured under various conditions agreed with composite data provided from the manufacturer to within 2%. Patient-specific QA results were evaluated in two ways. Point dose measurements with an ion chamber were all within the 5% absolute-dose agreement, and relative-dose measurements using an array ion chamber detector all satisfied the 3%/3 mm gamma criterion for more than 90% of the measurement points. The Robotic IMRT M6 system equipped with the $InCise^{TM}2$ MLC was proven to be accurate and reliable.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Development and application of stent-based image guided navigation system for oral and maxillofacial surgery (구강외과 수술용 스텐트 기반 영상유도 수술 시스템의 개발)

  • Lee, Woo-Jin;Kim, Dae-Seung;Yi, Won-Jin;Lee, Sam-Sun;Choi, Soon-Chul;Heo, Min-Suk;Huh, Kyung-Hoe;Kim, Myung-Jin;Lee, Jee-Ho
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.149-156
    • /
    • 2009
  • Purpose : The purpose of this study was to develop a stent-based image guided surgery system and to apply it to oral and maxillofacial surgeries for anatomically complex sites. Materials and Methods : We devised a patient-specific stent for patient-to-image registration and navigation. Three-dimensional positions of the reference probe and the tool probe were tracked by an optical camera system and the relative position of the handpiece drill tip to the reference probe was monitored continuously on the monitor of a PC. Using 8 landmarks for measuring accuracy, the spatial discrepancy between CT image coordinate and physical coordinate was calculated for testing the normality. Results : The accuracy over 8 anatomical landmarks showed an overall mean of $0.56{\pm}0.16\;mm$. The developed system was applied to a surgery for a vertical alveolar bone augmentation in right mandibular posterior area and possible interior alveolar nerve injury case of an impacted third molar. The developed system provided continuous monitoring of invisible anatomical structures during operation and 3D information for operation sites. The clinical challenge showed sufficient accuracy and availability of anatomically complex operation sites. Conclusion : The developed system showed sufficient accuracy and availability in oral and maxillofacial surgeries for anatomically complex sites.

  • PDF

A new Clustering Algorithm for the Scanned Infrared Image of the Rosette Seeker (로젯 탐색기의 적외선 주사 영상을 위한 새로운 클러스터링 알고리즘)

  • Jahng, Surng-Gabb;Hong, Hyun-Ki;Doo, Kyung-Su;Oh, Jeong-Su;Choi, Jong-Soo;Seo, Dong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • The rosette-scan seeker, mounted on the infrared guided missile, is a device that tracks the target It can acquire the 2D image of the target by scanning a space about target in rosette pattern with a single detector Since the detected image is changed according to the position of the object in the field of view and the number of the object is not fixed, the unsupervised methods are employed in clustering it The conventional ISODATA method clusters the objects by using the distance between the seed points and pixels So, the clustering result varies in accordance with the shape of the object or the values of the merging and splitting parameters In this paper, we propose an Array Linkage Clustering Algorithm (ALCA) as a new clustering algorithm improving the conventional method The ALCA has no need for the initial seed points and the merging and splitting parameters since it clusters the object using the connectivity of the array number of the memory stored the pixel Therefore, the ALCA can cluster the object regardless of its shape With the clustering results using the conventional method and the proposed one, we confirm that our method is better than the conventional one in terms of the clustering performance We simulate the rosette scanning infrared seeker (RSIS) using the proposed ALCA as an infrared counter countermeasure The simulation results show that the RSIS using our method is better than the conventional one in terms of the tracking performance.

  • PDF

Behavior of amber fish, Seriola aureovittata released in the setnet (정치망내에 방류한 부시리, Seriola aureovittata 의 행동)

  • 신현옥;이주희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.161-169
    • /
    • 1999
  • This paper describes the swimming and escaping behavior of amber fish, Seriola aureovittata released in the first bag net of the setnet and observed with telemetry techniques. The setnet used in experiment is composed of a leader, a fish court with a flying net and two bag nets having ramp net. The behavior of the fish attached an ultrasonic depth pinger of 50 KHz is observed using a prototype LBL fish tracking system. The 3-D underwater position ofthe fish is calculated by hyperbolic method with three channels of receiver and the depth of pinger. The results obtained are as follows: 1. The fish released on the sea surface was escaped down to 15 m depth and rised up to near the sea surface during 5 minutes after release. The average swimming speed of the fish during this time was 0.87 m/sec. 2. The swimming speed of the fish is decreased slowly in relation to the time elapsed and the fish showed some escaping behavior forward to the fish court staying 1 to 7 m depth layer near the ramp net. The average speed of the fish during this time was 0.52 m/sec. 3. During 25 minutes after beginning of hauling net, the fish showed a faster swimming speed than before hauling and an escaping behavior repeatedly from the first ramp net to the second one in horizontal. In vertical, the fish moved up and down between the sea surface and 20 m depth. After this time, the fish showed the escaping behavior forward to fish court after come back to the first ramp net in spite of the hauling was continued. It is found that the fish was escaped from the first ramp net to the fish court while the hauling was carried out. The average speed of the fish after beginning of hauling was 0.72 m/sec which increased 38.5 % than right before the hauling and showed 0.44 to 0.82 m/see of speed till escaping the first bag net. The average swimming speed during observation was 0.67 m/sec (2.2 times of body length).

  • PDF