• 제목/요약/키워드: 3D Position Tracking

Search Result 155, Processing Time 0.023 seconds

Foreground segmentation and tracking from sequential stereo images for 3D object modeling (3차원 물체 모델링을 위한 연속된 스테레오 이미지 상에서의 전경 영역 분리 및 추적)

  • Han, In-Kyu;Kim, Hyoung-Nyoun;Kim, Kyung-Koo;Park, Ji-Hyung
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The previous researches of 3D object modeling have been performed in a limited environment where a target object only exists. However, in order to model an object in the real environment, we need to consider a dynamic environment, which has various objects and a frequently changing background. Therefore, this paper presents a segmentation and tracking method for a foreground which includes a target object in the dynamic environment. By using depth information than color information, the foreground region can be segmented and tracked more robustly. In addition, the foreground region can be tracked on the sequential images by referring depth distributions of the foreground region because both the position and the status in the consecutive images of the foreground region are almost unchanged. Experimental results show that our proposed method can robustly segment and track the foreground region in various conditions of the real environment. Moreover, as an application of the proposed method, it is presented a method for modeling an object extracting the object regions from the foreground region that is segmented and tracked.

  • PDF

Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor (무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어)

  • Kin, Min Ho;Yang, Oh;Kim, Youn Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

Estimation of Human Height and Position using a Single Camera (단일 카메라를 이용한 보행자의 높이 및 위치 추정 기법)

  • Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.20-31
    • /
    • 2008
  • In this paper, we propose a single view-based technique for the estimation of human height and position. Conventional techniques for the estimation of 3D geometric information are based on the estimation of geometric cues such as vanishing point and vanishing line. The proposed technique, however, back-projects the image of moving object directly, and estimates the position and the height of the object in 3D space where its coordinate system is designated by a marker. Then, geometric errors are corrected by using geometric constraints provided by the marker. Unlike most of the conventional techniques, the proposed method offers a framework for simultaneous acquisition of height and position of an individual resident in the image. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences from outdoor environments.

An Implementation of Real-time Motion Restoration System based on Inverse Kinematics (역운동학을 이용한 실시간 동작 복원 시스템 구현)

  • Lee, R.H.;Lee, C.W.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.741-750
    • /
    • 2014
  • This paper presents a real-time motion restoration system for people who need remedial exercise of musculoskeletal based on Inverse Kinematics. A new approach is suggested to recognize a gesture based on restored human motion which is calculated the 3D positions of intermediate joints using 3D positions of body features estimated from images. For generating the 3D candidate positions of intermediate joints which cannot be extracted from images, we apply an Inverse Kinematics theory to compute the target position of intermediate joints. And we can reduce the number of candidate positions by applying the various physical constraints of body. Finally, we can generate the more accurate final position using the Kalman filter for a motion tracking and the relationship between the previous frame information and the candidate positions. The system provide motion information which are rotation angle and height in real-time, therefore the rehabilitation exercises can be performed based on the information and figured out proper exercise for individual status.

A Study on UAV DoA Estimation Accuracy Improvement using Monopulse Tracking (모노펄스 추적을 이용한 무인기 DoA 추정정밀도 향상 방안에 관한 연구)

  • Son, Eutum-Hyotae;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1121-1126
    • /
    • 2017
  • Various studies such as INS(: Inertial Navigation System) are conducting to estimate the position of UAV, because the GPS information of UAV is at risk like the GPS jamming. The position estimation using DoA and RTT are used to apply many radar systems, and that process can be applied in datalink of UAV. The general monopulse feed in UAV datalink is Multi-horn, because of the wide BW(: Band Width) and frequency range. And it needs wide SNR range of tracking because of the limited transmit power of airborne unit. The estimation error of position increase at low SNR, and the DoA is valid in only 3dB beam width but high SNR causes false of mainlobe detection because of large sidelobe. In this paper, We propose the method to achieve higher accuracy of DoA estimation on low SNR and review some idea that able to detect mainlobe.

Convergence Control of Moving Object using Opto-Digital Algorithm in the 3D Robot Vision System

  • Ko, Jung-Hwan;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, a new target extraction algorithm is proposed, in which the coordinates of target are obtained adaptively by using the difference image information and the optical BPEJTC(binary phase extraction joint transform correlator) with which the target object can be segmented from the input image and background noises are removed in the stereo vision system. First, the proposed algorithm extracts the target object by removing the background noises through the difference image information of the sequential left images and then controlls the pan/tilt and convergence angle of the stereo camera by using the coordinates of the target position obtained from the optical BPEJTC between the extracted target image and the input image. From some experimental results, it is found that the proposed algorithm can extract the target object from the input image with background noises and then, effectively track the target object in real time. Finally, a possibility of implementation of the adaptive stereo object tracking system by using the proposed algorithm is also suggested.

Stereo Vision-Based 3D Pose Estimation of Product Labels for Bin Picking (빈피킹을 위한 스테레오 비전 기반의 제품 라벨의 3차원 자세 추정)

  • Udaya, Wijenayake;Choi, Sung-In;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2016
  • In the field of computer vision and robotics, bin picking is an important application area in which object pose estimation is necessary. Different approaches, such as 2D feature tracking and 3D surface reconstruction, have been introduced to estimate the object pose accurately. We propose a new approach where we can use both 2D image features and 3D surface information to identify the target object and estimate its pose accurately. First, we introduce a label detection technique using Maximally Stable Extremal Regions (MSERs) where the label detection results are used to identify the target objects separately. Then, the 2D image features on the detected label areas are utilized to generate 3D surface information. Finally, we calculate the 3D position and the orientation of the target objects using the information of the 3D surface.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

Development of Transmitter/Receiver Front-End Module with Automatic Tx/Rx Switching Scheme for Retro-Reflective Beamforming

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • In this work, a transmitter/receiver front-end module (T/R FEM) with an automatic Tx/Rx switching scheme for a 2.4 GHz microwave power transfer is developed for a retro-reflective beamforming scheme. Recently, research on wireless power transfer techniques has moved to wireless charging systems for mobile devices. Retro-reflective beamforming is a good candidate for tracking the spatial position of a mobile device to be charged. In Tx mode, the T/R FEM generates a minimum of 1 W. It also comprises an amplitude and phase monitoring port for transmitting RF power. In Rx mode, it passes an Rx pilot signal from a mobile device to a digital baseband subsystem to recognize the position of the mobile device. The insertion loss of the Rx signal path is 4.5 dB. The Tx and Rx modes are automatically switched by detecting the Tx input power. This T/R FEM is a design example of T/R FEMs for wireless charging systems based on a retro-reflective beamforming scheme.

3D Object Location Identification Using Finger Pointing and a Robot System for Tracking an Identified Object (손가락 Pointing에 의한 물체의 3차원 위치정보 인식 및 인식된 물체 추적 로봇 시스템)

  • Gwak, Dong-Gi;Hwang, Soon-Chul;Ok, Seo-Won;Yim, Jung-Sae;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.703-709
    • /
    • 2015
  • In this work, a robot aimed at grapping and delivering an object by using a simple finger-pointing command from a hand- or arm-handicapped person is introduced. In this robot system, a Leap Motion sensor is utilized to obtain the finger-motion data of the user. In addition, a Kinect sensor is also used to measure the 3D (Three Dimensional)-position information of the desired object. Once the object is pointed at through the finger pointing of the handicapped user, the exact 3D information of the object is determined using an image processing technique and a coordinate transformation between the Leap Motion and Kinect sensors. It was found that the information obtained is transmitted to the robot controller, and that the robot eventually grabs the target and delivers it to the handicapped person successfully.