• Title/Summary/Keyword: 3D Pose Estimation

Search Result 157, Processing Time 0.026 seconds

Golf Green Slope Estimation Using a Cross Laser Structured Light System and an Accelerometer

  • Pham, Duy Duong;Dang, Quoc Khanh;Suh, Young Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.508-518
    • /
    • 2016
  • In this paper, we propose a method combining an accelerometer with a cross structured light system to estimate the golf green slope. The cross-line laser provides two laser planes whose functions are computed with respect to the camera coordinate frame using a least square optimization. By capturing the projections of the cross-line laser on the golf slope in a static pose using a camera, two 3D curves’ functions are approximated as high order polynomials corresponding to the camera coordinate frame. Curves’ functions are then expressed in the world coordinate frame utilizing a rotation matrix that is estimated based on the accelerometer’s output. The curves provide some important information of the green such as the height and the slope’s angle. The curves estimation accuracy is verified via some experiments which use OptiTrack camera system as a ground-truth reference.

3D Visualization using Face Position and Direction Tracking (얼굴 위치와 방향 추적을 이용한 3차원 시각화)

  • Kim, Min-Ha;Kim, Ji-Hyun;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.173-175
    • /
    • 2011
  • In this paper, we present an user interface which can show some 3D objects at various angles using tracked 3d head position and orientation. In implemented user interface, First, when user's head moves left/right (X-Axis) and up/down(Y-Axis), displayed objects are moved towards user's eyes using 3d head position. Second, when user's head rotate upon an X-Axis(pitch) or an Y-Axis(yaw), displayed objects are rotated by the same value as user's. The results of experiment from a variety of user's position and orientation show good accuracy and reactivity for 3d visualization.

  • PDF

Ordinal Depth Based Deductive Weakly Supervised Learning for Monocular 3D Human Pose Estimation (단안 이미지로부터 3D 사람 자세 추정을 위한 순서 깊이 기반 연역적 약지도 학습 기법)

  • Youngchan Lee;Gyubin Lee;Wonsang You
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.826-829
    • /
    • 2024
  • 3D 사람 자세 추정 기술은 다양한 응용 분야에서의 높은 활용성으로 인해 대량의 학습 데이터가 수집되어 딥러닝 모델 연구가 진행되어 온 반면, 동물 자세 추정의 경우 3D 동물 데이터의 부족으로 인해 관련 연구는 극히 미진하다. 본 연구는 동물 자세 추정을 위한 예비연구로서, 3D 학습 데이터가 없는 상황에서 단일 이미지로부터 3D 사람 자세를 추정하는 딥러닝 기법을 제안한다. 이를 위하여 사전 훈련된 다중 시점 학습모델을 사용하여 2D 자세 데이터로부터 가상의 다중 시점 데이터를 생성하여 훈련하는 연역적 학습 기반 교사-학생 모델을 구성하였다. 또한, 키포인트 깊이 정보 대신 2D 이미지로부터 레이블링 된 순서 깊이 정보에 기반한 손실함수를 적용하였다. 제안된 모델이 동물데이터에서 적용 가능한지 평가하기 위해 실험은 사람 데이터를 사용하여 이루어졌다. 실험 결과는 제안된 방법이 기존 단안 이미지 기반 모델보다 3D 자세 추정의 성능을 개선함을 보여준다.

Pose estimation-based 3D model motion control using low-performance devices (저성능 디바이스를 이용한 자세추정 기반 3D 모델 움직임 제어)

  • Jae-Hoon Jang;Yoo-Joo Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.763-765
    • /
    • 2023
  • 본 논문에서는 저성능 컴퓨터나 스마트폰의 카메라를 통해 입력받은 영상을 기반으로 사용자의 포즈를 추정하고, 실시간으로 사용자의 포즈에 따라 3D 모델의 모션이 제어되어 가시화 될 수 있는 클라이어트-서버 구조의 "자세추정 및 3D 모델 모션 제어 시스템"을 제안한다. 제안 시스템은 소켓통신 기반의 클라이언트-서버구조로 구성되어, 서버에서는 실시간 자세 추정을 위한 딥러닝 모델이 수행되고, 저성능 클라이언트에서는 실시간으로 카메라 영상을 획득하여 영상을 서버에 전송하고, 서버로부터 자세 추정 정보를 받아 이를 3D 모델에 반영하고 렌더링 함으로써 사용자와 함께 3D 모델이 같은 동작을 수행하는 증강현실 화면을 생성한다. 고성능을 요구하는 객체 자세 추정 모듈은 서버에서 실행하고, 클라이언트에서는 영상 획득 및 렌더링만을 실행하기 때문에, 모바일 앱에서의 실시간 증강현실을 위한 자세 추정 및 3D 모델 모션 제어가 가능하다. 제안 시스템은 "증강현실 기반 영상 찍기 앱" 에 반영되어 사용자의 움직임을 따라하는 3D 캐릭터들의 영상을 쉽게 생성할 수 있도록 할 수 있다.

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

Projection mapping onto multiple objects using a projector robot

  • Yamazoe, Hirotake;Kasetani, Misaki;Noguchi, Tomonobu;Lee, Joo-Ho
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.45-57
    • /
    • 2018
  • Even though the popularity of projection mapping continues to increase and it is being implemented in more and more settings, most current projection mapping systems are limited to special purposes, such as outdoor events, live theater and musical performances. This lack of versatility arises from the large number of projectors needed and their proper calibration. Furthermore, we cannot change the positions and poses of projectors, or their projection targets, after the projectors have been calibrated. To overcome these problems, we propose a projection mapping method using a projector robot that can perform projection mapping in more general or ubiquitous situations, such as shopping malls. We can estimate a projector's position and pose with the robot's self-localization sensors, but the accuracy of this approach remains inadequate for projection mapping. Consequently, the proposed method solves this problem by combining self-localization by robot sensors with position and pose estimation of projection targets based on a 3D model. We first obtain the projection target's 3D model and then use it to accurately estimate the target's position and pose and thus achieve accurate projection mapping with a projector robot. In addition, our proposed method performs accurate projection mapping even after a projection target has been moved, which often occur in shopping malls. In this paper, we employ Ubiquitous Display (UD), which we are researching as a projector robot, to experimentally evaluate the effectiveness of the proposed method.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

Infrared camera calibration-based passive marker pose estimation method (적외선 카메라 칼리브레이션 기반 패시브 마커 자세 추정 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.203-204
    • /
    • 2022
  • 본 논문에서는 다수의 적외선 카메라의 2D 패시브마커 영상을 이용한 3차원 리지드 바디(Rigid Body) 자세추정 방법을 제안한다. 1차로 개별 카메라의 내부 변수를 구하기 위해 체스보드를 이용한 칼리브레이션 과정을 수행하고, 2차 보정 과정에서 3개의 적외선 마커가 있는 삼각형 구조물을 모든 카메라가 관찰 가능하도록 움직인 후 프레임별 누적된 데이터를 계산하여 카메라 간의 상대적인 위치정보의 보정 및 업데이트를 진행한다. 이 후 각 카메라의 좌표계를 3D월드 좌표계로 변환하는 과정을 통해 3개 마커의 3차원 좌표를 복원하여 각 마커간 거리를 계산하여 실제 거리와의 차이를 비교한 결과 1mm 내외의 오차를 측정하였다.

  • PDF

Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving (자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정)

  • Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2023
  • Depth estimation is a key technology in 3D map generation for autonomous driving of vehicles, robots, and drones. The existing sensor-based method has high accuracy but is expensive and has low resolution, while the camera-based method is more affordable with higher resolution. In this study, we propose self-attention-based unsupervised monocular depth estimation for UAV camera system. Self-Attention operation is applied to the network to improve the global feature extraction performance. In addition, we reduce the weight size of the self-attention operation for a low computational amount. The estimated depth and camera pose are transformed into point cloud. The point cloud is mapped into 3D map using the occupancy grid of Octree structure. The proposed network is evaluated using synthesized images and depth sequences from the Mid-Air dataset. Our network demonstrates a 7.69% reduction in error compared to prior studies.

Vehicle Dynamics and Road Slope Estimation based on Cascade Extended Kalman Filter (Cascade Extended Kalman Filter 기반의 차량동특성 및 도로종단경사 추정)

  • Kim, Moon-Sik;Kim, Chang-Il;Lee, Kwang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.208-214
    • /
    • 2014
  • Vehicle dynamic states used in various advanced driving safety systems are influenced by road geometry. Among the road geometry information, the vehicle pitch angle influenced by road slope and acceleration-deceleration is essential parameter used in pose estimation including the navigation system, advanced adaptive cruise control and others on sag road. Although the road slope data is essential parameter, the method measuring the parameter is not commercialized. The digital map including the road geometry data and high-precision DGPS system such as DGPS(Differential Global Positioning System) based RTK(Real-Time Kinematics) are used unusually. In this paper, low-cost cascade extended Kalman filter(CEKF) based road slope estimation method is proposed. It use cascade two EKFs. The EKFs use several measured vehicle states such as yaw rate, longitudinal acceleration, lateral acceleration and wheel speed of the rear tires and 3 D.O.F(Degree Of Freedom) vehicle dynamics model. The performance of proposed estimation algorithm is evaluated by simulation based on Carsim dynamics tool and T-car based experiment.