• 제목/요약/키워드: 3D Point Data

검색결과 1,128건 처리시간 0.03초

3D Scanning Data Coordination and As-Built-BIM Construction Process Optimization - Utilization of Point Cloud Data for Structural Analysis

  • Kim, Tae Hyuk;Woo, Woontaek;Chung, Kwangryang
    • Architectural research
    • /
    • 제21권4호
    • /
    • pp.111-116
    • /
    • 2019
  • The premise of this research is the recent advancement of Building Information Modeling(BIM) Technology and Laser Scanning Technology(3D Scanning). The purpose of the paper is to amplify the potential offered by the combination of BIM and Point Cloud Data (PCD) for structural analysis. Today, enormous amounts of construction site data can be potentially categorized and quantified through BIM software. One of the extraordinary strengths of BIM software comes from its collaborative feature, which can combine different sources of data and knowledge. There are vastly different ways to obtain multiple construction site data, and 3D scanning is one of the effective ways to collect close-to-reality construction site data. The objective of this paper is to emphasize the prospects of pre-scanning and post-scanning automation algorithms. The research aims to stimulate the recent development of 3D scanning and BIM technology to develop Scan-to-BIM. The paper will review the current issues of Scan-to-BIM tasks to achieve As-Built BIM and suggest how it can be improved. This paper will propose a method of coordinating and utilizing PCD for construction and structural analysis during construction.

3D Shape Descriptor for Segmenting Point Cloud Data

  • Park, So Young;Yoo, Eun Jin;Lee, Dong-Cheon;Lee, Yong Wook
    • 한국측량학회지
    • /
    • 제30권6_2호
    • /
    • pp.643-651
    • /
    • 2012
  • Object recognition belongs to high-level processing that is one of the difficult and challenging tasks in computer vision. Digital photogrammetry based on the computer vision paradigm has begun to emerge in the middle of 1980s. However, the ultimate goal of digital photogrammetry - intelligent and autonomous processing of surface reconstruction - is not achieved yet. Object recognition requires a robust shape description about objects. However, most of the shape descriptors aim to apply 2D space for image data. Therefore, such descriptors have to be extended to deal with 3D data such as LiDAR(Light Detection and Ranging) data obtained from ALS(Airborne Laser Scanner) system. This paper introduces extension of chain code to 3D object space with hierarchical approach for segmenting point cloud data. The experiment demonstrates effectiveness and robustness of the proposed method for shape description and point cloud data segmentation. Geometric characteristics of various roof types are well described that will be eventually base for the object modeling. Segmentation accuracy of the simulated data was evaluated by measuring coordinates of the corners on the segmented patch boundaries. The overall RMSE(Root Mean Square Error) is equivalent to the average distance between points, i.e., GSD(Ground Sampling Distance).

Multi-view Stereo에서 Dense Point Cloud를 위한 Fusing 알고리즘 (Fusing Algorithm for Dense Point Cloud in Multi-view Stereo)

  • 한현덕;한종기
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.798-807
    • /
    • 2020
  • 디지털 카메라와 휴대폰 카메라의 발달로 인해 이미지를 기반으로 3차원 물체를 복원하는 기술이 크게 발전했다. 하지만 Structure-from-Motion(SfM)과 Multi-view Stereo(MVS)를 이용한 결과인 dense point cloud에는 여전히 듬성한 영역이 존재한다. 이는 깊이 정보를 추정하는데 있는 어려움과, 깊이 지도를 point cloud로 fusing할 때 이웃 영상과의 깊이 정보가 불일치할 경우 깊이 정보를 삭제하고 point를 생성하지 않았기 때문이다. 본 논문에선 평면을 모델링하여 삭제된 깊이 정보에 새로운 깊이 정보를 부여하고 point를 생성하여 기존 결과보다 dense한 point cloud를 생성하는 알고리즘을 제안한다. 실험 결과를 통해 제안하는 알고리즘이 효과적으로 기존의 방법보다 dense한 point cloud를 생성함을 확인할 수 있다.

3차원 LiDAR 점군 데이터에서의 가상 차량 데이터 생성을 위한 구면 점 추적 기법 (Spherical Point Tracing for Synthetic Vehicle Data Generation with 3D LiDAR Point Cloud Data)

  • 이상준;김학일
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.329-332
    • /
    • 2023
  • 딥러닝 네트워크를 이용한 3차원 객체 인식 기술은 자율주행 기술 개발에 있어 대상 객체의 종류 뿐만 아니라 센서로부터의 거리도 인식할 수 있기 때문에 장애물 탐지를 위해 많이 개발되고 있다. 하지만 3차원 객체 인식 모델의 경우 원거리 객체에 대한 탐지 성능이 근거리 객체에 대한 인식 성능보다 낮아 차량의 안전을 확보하는 데에 치명적인 문제가 발생할 수 있다. 본 논문에서는 가상의 3차원 차량 데이터를 생성해 모델 학습에 사용되는 데이터셋에 추가하여 3차원 객체 인식 모델의 성능, 특히 원거리의 객체에 대한 성능을 향상시키는 기술을 소개한다. 3차원 라이다 센서 데이터의 특성을 활용한 구면 점 추적 기법을 사용하여 실제 차량과 매우 유사한 가상 차량을 생성하였고, 생성한 가상 차량 데이터를 사용하여 원거리뿐만 아니라 모든 거리 영역 범위에서의 객체 인식 성능을 향상시킴으로써 가상 데이터의 학습 유효성을 입증하였다.

국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석 (The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models)

  • 박진아
    • 복식
    • /
    • 제65권2호
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.

3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계 (Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition)

  • 오성권;오승훈
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

단속형 가변적층쾌속조형공정을 이용한 3차원 스캔데이터로부터 3차원 시작품의 쾌속 제작 (Rapid Manufacturing of 3D Prototype from 3D scan data using VLM-ST)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-539
    • /
    • 2002
  • The reverse engineering (RE) technology can quickly generate 3D point cloud data of an object by capturing the surface of a model using a 3D scanner. In the rapid prototyping (RP) technology, prototypes are rapidly produced from 3D CAD models in a layer-by-layer additive basis. In this paper, a physical human head shape is duplicated using a new RP process, the Transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), after the point cloud data of a human head shape measured from 3D SNX scanner are converted to STL file. From the duplicated human head shape, it has been shown that the VLM-ST process in connection with the 3D scanner is a fast and efficient process in that shapes with free surface, such as the human head shape, can be duplicated with ease. Considering the measurement time and the shape duplication time, the use of 3D SNX scanner and the VLM-ST process is expected to reduce the lead-time fur the development of new products in comparison with the other existing RE-RP connected manufacturing systems.

  • PDF

중국 성인여성의 직접계측과 3D Body scanning 치수 비교 연구 (Comparison of Size between direct-measurement and 3D body scanning)

  • 차수정
    • 패션비즈니스
    • /
    • 제16권1호
    • /
    • pp.150-159
    • /
    • 2012
  • This study intend to analyze differences between 3D body scanning sizes and direct measurement sizes of same subjects. The subjects of study are female students of university in China. 3D data analyze as a 3D Body Measurement Soft System. The conclusion found is as below: In case of circumferences, error between direct-measurement size and 3D body scanning size is from 4.9mm to 62.2mm. The neck circumference size of directmeasurement is bigger than 3D body scanning size. The height error range is from 0.6mm to 51mm. Height of underbust, waist and hip are that direct-measurement sizes are higher than 3D body scanning sizes. Gap of width is from 3.8mm to 21.9mm. The gap range is too narrow relatively to others. Only direct-measurement size of neck width is wider than 3D body scanning size. Error range of length is from 0.3mm to 41.8mm. 3D body scanning sizes of lateral neck to waistline, upperarm length, arm length, neck shoulder point to breast point, shoulder center point to breast point, lateral shoulder to breast point are longer than direct-measurement sizes. They have a negative margin of error. I intend to set up same measurement point between direct-measurement and 3D body scanning but they have some errors because direct-measurement point is applied by a person. 3D body scanning measurement point is settled by automatic system. A measurement point of direct-measurement and 3D body scanning isn't unite. So we need to make a standard of setting up measurement points.

건축물 평면 형상 역설계 자동화를 위한 Scan-to-Geometry 맵핑 규칙 정의 (Scan-to-Geometry Mapping Rule Definition for Building Plane Reverse engineering Automation)

  • 강태욱
    • 한국BIM학회 논문집
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, many scan projects are gradually increasing for maintenance, construction. The scan data contains useful data, which can be generated in the target application from the facility, space. However, modeling the scan data required for the application requires a lot of cost. In example, the converting 3D point cloud obtained from scan data into 3D object is a time-consuming task, and the modeling task is still very manual. This research proposes Scan-to-Geometry Mapping Rule Definition (S2G-MD) which maps point cloud data to geometry for irregular building plane objects. The S2G-MD considers user use case variability. The method to define rules for mapping scan to geometry is proposed. This research supports the reverse engineering semi-automatic process for the building planar geometry from the user perspective.