It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.
In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.
고해상도 UAV 영상의 다양한 활용을 위해서는 정밀한 위치보정이 필요하다. 이를 위해 지상기준점을 선정하는 것이 일반적이지만 긴급상황이나 지상기준점 선정이 어려운 경우에는 지상기준점없이 촬영을 수행해야 한다. 본연구에서는 지상기준점 없이 생성된 UAV 기반 3차원 point cloud 데이터의 x, y 좌표에 대한 위치 정확도 향상방법을 제안하였다. 위치정확도 향상을 위한 기준 데이터로 공공데이터포털에서 제공하는 벡터파일 중 도로 정보를 이용하였다. 2차원 정사보정 영상의 기하보정을 먼저 수행하고, 이 과정에서 산출된 변환행렬을 3차원 point cloud에 적용하는 방법을 채택하였다. 보정 전 약 34.54 m의 직선 거리 차이가 보정 후 약 1.21 m 로 감소하였다. 지상기준점 선정없이 획득된 UAV영상의 2차원 및 3차원 영상의 위치정확도 향상이 가능함을 확인함에 따라 타 공간정보 데이터와의 연계 및 호환 등이 가능해져 point cloud 데이터에서 획득된 3차원 공간 객체의 활용 범위의 확대를 기대한다.
Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.
본 논문에서는 다중 RGB-D 카메라의 포인트 클라우드 정합 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 문제에 많은 관심을 두고 있다. 기존의 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3D Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 기존의 방식은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라 8대를 사용하여 전방위 3차원 모델을 생성하기 위해 깊이 이미지와 함수 최적화 방식을 이용하여 유효한 범위 내의 오차를 갖는 좌표 변환 파라미터를 구하는 방식을 제안한다.
최근 UAM(Urban Air Mobility)에 대한 관심이 도시의 교통 혼잡과 대기오염 문제 해결 방안으로 급증하고 있다. 하지만 UAM의 효율적인 운영을 위해서는 3D Point Cloud 데이터의 정확한 처리가 필요하며, 특히 지면과 객체를 분리하는 문제가 중요하다. 본 논문은 UAM 환경의 동적이고 복잡한 특성을 고려하여 지면과 객체를 효과적으로 분리하는 방법을 제안하고 검증한다. 우리의 접근 방식은 MEMS 센서로부터 얻은 자세 정보와 RANSAC을 이용한 지면 평면 추정을 결합하여, GPS 오차에 크게 영향 받지 않는 지면/객체 분리를 가능하게 한다. 시뮬레이션 결과는 이 방법이 UAM 환경에서 효과적으로 작동함을 보여주며, 도심 항공 모빌리티의 안전성과 효율성을 향상시키는 중요한 단계를 제시한다. 향후 연구는 이 알고리즘의 정확성을 높이고 다양한 UAM 환경에서 성능을 평가하며, 실제 드론 테스트를 진행할 예정이다.
굴착 현장에서 신속·정확·안전한 측량을 위해 본 연구에서는 드론을 이용한 지하 시설물 측량의 적용 가능성 및 3D 시각화의 기대효과를 다음과 같이 도출하였다. Phantom4 Pro 20MP의 드론으로 30m의 비행 고도, 중복도 85%의 비행계획으로 0.85mm의 GSD (Ground Sampling Distance)값을 확보하였고, GCP (Groud Control Point)4점과 검사점 2점을 계산하여 기준점에 대하여 7.3mm, 검사점은 11mm의 성과를 취득할 수 있었다. 저가의 드론으로 측량할 경우 GCP의 중요성이 확인되었으며, 지상 기준점이 없는 경우, X값의 오차 범위는 -81.2cm에서 +90.0cm, Y값의 오차 범위는 +6.8cm에서 155.9 cm 값을 도출하였다. Pix4D 프로그램을 이용하여 포인트 클라우드 데이터를 분류하였다. 지하 시설물 데이터와 도로 포장면의 데이터를 분류하고, 중첩과정을 통해 실제 모형의 도로와 지하 시설물의 데이터를 3D 시각화하였다. 중첩된 포인트 클라우드 데이터는 Open Source 프로그램인 CloudCompare를 통해 사용자가 원하는 장소의 위치와 심도 정보를 확인할 수 있게 되었다. 본 연구결과로 지하 시설물 측량의 새로운 패러다임으로 자리매김하게 될 것이다.
불연속면 거칠기는 암반의 기계적 특성에 큰 영향을 주며 열·수리 역학적 거동에도 많은 영향을 미치는 요소이다. 본 연구에서는 입체사진측량기법을 이용하여 불연속면에 대한 3차원 점군 데이터를 생성시키고 이를 이용하여 불연속면의 거칠기 특성화를 수행하였다. 3차원 점군 데이터로 재생성된 불연속면 프로파일과 프로파일 게이지를 이용하여 수동으로 측정한 프로파일을 비교하여 취득한 점군 데이터가 암반면의 실제 형상을 정확하게 재현하였는지 평가하였다. 또한, 측정 프로파일수가 거칠기 평가에 미치는 영향에 대해 분석하였고, 거칠기의 이방성 평가방법을 제안하고 실제 암반 불연속면에 대한 거칠기 이방성 평가를 수행하였다.
This study proposes a novel approach for ground segmentation of 3D point cloud. We combine two techniques: gradient threshold segmentation, and mean height evaluation. Acquired 3D point cloud is represented as a graph data structures by exploiting the structure of 2D reference image. The ground parts nearing the position of the sensor are segmented based on gradient threshold technique. For sparse regions, we separate the ground and nonground by using a technique called mean height evaluation. The main contribution of this study is a new ground segmentation algorithm which works well with 3D point clouds from various environments. The processing time is acceptable and it allows the algorithm running in real time.
본 연구는 대용량 3차원 포인트 클라우드의 탐색을 위한 메모리 효율적인 옥트리를 설계하는 것을 목표로 한다. 이를 위하여 C++ 언어로 구현된 옥트리 노드의 구성요소 중 최소 경계 입방체 좌표 정보 등을 위한 변수를 제거하는 대신, 부모 노드에서 자식 노드 접근시 최소 경계 입방체 좌표를 계산하여 전달하였다. 아울러 자식 노드 등의 생성시마다 new 연산자를 사용하는 대신, 수도 트리와 정식 트리를 생성하는 이중적인 과정을 통해 노드 등을 배열로 미리 선언함으로서 메모리 효율성을 더욱 개선하였다. 1800만개 이상의 포인트로 구성된 실제 포인트 클라우드를 대상으로 트리를 구성하고 인접 포인트를 탐색하는 실험을 수행하였다. 최소 경계 입방체 좌표 정보를 노드에 저장하는 경우와 비교한 결과 메모리 사용량과 탐색 속도의 트레이드오프가 존재하지만 제안한 방식이 비교군보다 메모리 효율적이어서 대용량 포인트 클라우드에 적용할 수 있는 대안임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.