• Title/Summary/Keyword: 3D Navigation

Search Result 825, Processing Time 0.026 seconds

Prediction of the Available Time for the SBAS Navigation of a Drone in Urban Canyon with Various Flight Heights (도심 지역에서의 드론 운용을 위한 비행 고도별 SBAS 보강항법 가용 시간 예측)

  • Seok, Hyo-Jeong;Park, Byung-Woon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.1
    • /
    • pp.133-148
    • /
    • 2016
  • Voices demanding a revision of the aviation law on the operating drones are continuously rising high with the increase of their applicability in various industry fields. According to the current regulations, drones are permitted to fly under very strict conditions, which include limited places and the line-of-sight visibility from pilots. Because of the strict regulations, it is almost impossible for drones to be used in many industries such as parcel delivery services. To improve the business value of drones, we have to improve the accuracy of drones' positions and provide the proper protection levels in order to detect and avoid any risks including the collisions with the other drones. SBAS(Satellite Based Augmentation System) can support the aviation requirements with the accuracy and integrity so as to reduce the position errors and to calculate the protection levels of drones. In this paper, we assign the flight heights of drones according to the decision heights as per LAAS(Local Area Augmentation System) landing categories and conduct a simulation to predict the SBAS available time of the day.

Camera calibration parameters estimation using perspective variation ratio of grid type line widths (격자형 선폭들의 투영변화비를 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Choi, Seong-Gu;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.30-32
    • /
    • 2004
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as lens distortion, focal length, scale factor, pose, orientations, and distance. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1, 2, 3, 4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. The average scale factor tends to fluctuate with small variation and makes distance error decrease. Compared with classical methods that use stereo camera or two or three orthogonal planes, the proposed method is easy to use and flexible. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

Efficient generation of concentric mosaics using image-strip mosaicking (스트립 영상 배치를 이용한 동심원 모자익의 효율적인 생성)

  • Jang, Kyung Ho;Jung, Soon Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • In general, image-based virtual environment is represented by panoramic images created by image mosaic algorithm. The cylindrical panoramic image supports the fixed-viewpoint navigation due to the constraints of construction. Shum proposed concentric mosaics to allow users to navigate freely within a circular area[10]. It is constructed by a sequence of images which is acquired from a regularly rotating camera. Concentric mosaics technique, proposed by Shum, is considered as 3D plenoptic function which is defined three parameters : distance, height and angle. In this paper, we suggest an effective method for creating concentric mosaics, in which we first align a set of strip images on the cylinder plane and stitch the aligned strips to build a panoramic image. The proposed method has no constraints such as regular panning motion of camera. Furthermore, our proposed method minimizes the use of interpolation image to create a novel view images from the concentric mosaics. It allows the result image on a novel view to have better quality with respect to the number of input images.

  • PDF

Confidence Map based Multi-view Image Generation Method from Stereoscopic Images (양안식 영상을 이용한 신뢰도 기반의 다시점 영상 생성 방법)

  • Kim, Do Young;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Multi-view video system provides both realistic 3D feelings and free-view navigation. But it is hard to transmit too huge data, so we send only two or three view images and generate intermediate view image using depth information. In this paper, we propose high quality multi-view image generation method from stereoscopic images. Since the stereo matching method does not provide accurate disparity values for all the pixels, especially at the occlusion area, we propose an occlusion handling method using the background pixels at first. We also apply a joint bilateral filtering to enhance the disparity map at the object boundary since it can affect the quality of synthesized images significantly. Finally, we can generate virtual view images at intermediate view positions using confidence map to reduce bad pixel and hole's error. Experimental results show the proposed method performs better than the conventional method.

  • PDF

Robust Pelvic Coordinate System Determination for Pose Changes in Multidetector-row Computed Tomography Images

  • Kobashi, Syoji;Fujimoto, Satoshi;Nishiyama, Takayuki;Kanzaki, Noriyuki;Fujishiro, Takaaki;Shibanuma, Nao;Kuramoto, Kei;Kurosaka, Masahiro;Hata, Yutaka
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • For developing navigation system of total hip arthroplasty (THA) and evaluating hip joint kinematics, 3-D pose position of the femur and acetabulum in the pelvic coordinate system has been quantified. The pelvic coordinate system is determined by manually indicating pelvic landmarks in multidetector-row computed tomography (MDCT) images. It includes intra- and inter-observer variability, and may result in a variability of THA operation or diagnosis. To reduce the variability of pelvic coordinate system determination, this paper proposes an automated method in MDCT images. The proposed method determines pelvic coordinate system automatically by detecting pelvic landmarks on anterior pelvic plane (APP) from MDCT images. The method calibrates pelvic pose by using silhouette images to suppress the affect of pelvic pose change. As a result of comparing with manual determination, the proposed method determined the coordinate system with a mean displacement of $2.6\;{\pm}\;1.6$ mm and a mean angle error of $0.78\;{\pm}\;0.34$ deg on 5 THA subjects. For changes of pelvic pose position within 10 deg, standard deviation of displacement was 3.7 mm, and of pose was 1.28 deg. We confirmed the proposed method was robust for pelvic pose changes.

The Camera Calibration Parameters Estimation using The Projection Variations of Line Widths (선폭들의 투영변화율을 이용한 카메라 교정 파라메터 추정)

  • Jeong, Jun-Ik;Moon, Sung-Young;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2372-2374
    • /
    • 2003
  • With 3-D vision measuring, camera calibration is necessary to calculate parameters accurately. Camera calibration was developed widely in two categories. The first establishes reference points in space, and the second uses a grid type frame and statistical method. But, the former has difficulty to setup reference points and the latter has low accuracy. In this paper we present an algorithm for camera calibration using perspective ratio of the grid type frame with different line widths. It can easily estimate camera calibration parameters such as focal length, scale factor, pose, orientations, and distance. But, radial lens distortion is not modeled. The advantage of this algorithm is that it can estimate the distance of the object. Also, the proposed camera calibration method is possible estimate distance in dynamic environment such as autonomous navigation. To validate proposed method, we set up the experiments with a frame on rotator at a distance of 1,2,3,4[m] from camera and rotate the frame from -60 to 60 degrees. Both computer simulation and real data have been used to test the proposed method and very good results have been obtained. We have investigated the distance error affected by scale factor or different line widths and experimentally found an average scale factor that includes the least distance error with each image. It advances camera calibration one more step from static environments to real world such as autonomous land vehicle use.

  • PDF

경부고속철도 건설에 따른 중심성측정식에 의한 국토동남권 공간구조 변화 ( On the Change in Spatial Structures of Southeast Region by Centrographic Measures in Accordance with Development of High-Speed Rail ( HSR ) )

  • Choi, Y.W.;Kim, S.D.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.305-320
    • /
    • 1997
  • The objective of this paper is to analysis & forecast on the change in spatial structures of southeast region by development of the Seoul-Pusan high-speed Rail. To measure the spatial structures, it was used the method of mean center and standard distance among of centrographic measures as analytical tools. The changes of spatial structures patten over time and space in the southeast region were surveyed using population and employment data of 57 zones. And also, to forecast the spatial structures of the southeast region after opening of the Seoul-Pusan high-speed rail, it was supposed three(3) scenarios which designed using influential area with centering around of the proposed high-speed rail stations. Therefore, the results of this research indicate as follows; 1) The spatial structures of population is showed a trend of continual concentration toward Ulsan city area, and also the spatial structures of employment is showed a trend of continual dispersion over time. 2) The forecast of three93) scenarios supposed after opening of the Seoul-Pusan high-speed rail in 2006 show a change of the spatial structures with both population concentration and employment dispersion. In the meantime, the rapid increase of population and wide dispersion of employment is reform with centering around HSR stations which builted in the southeast region after opening of high-speed rail. 3) It shall furnish valuable data to establish the development strategy of urban and local region, and also forecast the change of spatial structures about population and employment in influential area which passed on high-speed rail line & stations by method of mean center and standard distance among of centrographic measures as analytical tools.

  • PDF

Development of a vestibulo-ocular reflex measurement system for the study of cybersickness (사이버멀미 경감 연구를 위한 전정안구반사 측정 시스템 개발)

  • Jeon, Hyeonjin;Chang, EunHee;Wendimagegn, Tariku Weldtsadik;Park, Chan Hyun;Jeong, Ji Woon;Kim, Hyun Taek
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.27-38
    • /
    • 2015
  • Vestibulo-ocular reflex (VOR) is a compensatory response of the extraocular muscles generated by vestibular signals to stabilize images on the retina during head/body movements. It has been reported that mismatches between retinal and vestibular information, which cause motion sickness or cybersickness, modify VOR. To investigate the characteristic changes of VOR in subjects experiencing cybersickness, we developed a low-cost, multi-purpose VOR measurement system using LabVIEW and Arduino. To test the applicability of the system, we performed two experiments. In Experiment 1, horizontal and vertical VORs of four participants were measured using a vestibular autorotation task. In Experiment 2, eight participants were exposed to a virtual navigation to measure changes of VORs as an index of cybersickness. We observed significantly greater head rotations and eye movements while the participants were exposed to the virtual navigation than to a static image. The results suggest that the present system can help understand the psychophysiological mechanisms of cybersickness symptoms.

Accuracy Evaluation of Earthwork Volume Calculation According to Terrain Model Generation Method (지형모델 구축 방법에 따른 토공물량 산정의 정확도 평가)

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • Calculation of quantity at construction sites is a factor that has a great influence on construction costs, and it is important to calculate accurate values. In this study, topographic model was created by using drone photogrammetry and drone LiDAR to estimate earthwork volume. ortho image and DSM (Digital Surface Model) were constructed for the study area by drone photogrammetry, and DEM (Digital Elevation Model) of the target area was established using drone LiDAR. And through accuracy evaluation, accuracy of each method are 0.034m, 0.35m in horizontal direction, 0.054m, 0.25m in vertical direction. Through the research, the usability of drone photogrammetry and drone LiDAR for constructing geospatial information was presented. As a result of calculating the volume of the study site, the UAV photogrammetry showed a difference of 1528.1㎥ from the GNSS (Global Navigation Satellite System) survey performance, and the 3D Laser Scanner showed difference of 160.28㎥. The difference in the volume of earthwork is due to the difference in the topographic model, and the efficiency of volume calculation by drone LiDAR could be suggested. In the future, if additional research is conducted using GNSS surveying and drone LiDAR to establish topographic model in the forest area and evaluate its usability, the efficiency of terrain model construction using drone LiDAR can be suggested.

A Study on the Practice of Engineering Education in Graduation Standards Certification Process through the Design and Implementation of Drone for Ground Driving and Aerial Flight (지상주행과 공중비행이 가능한 Drone 설계 및 구현을 통한 졸업기준 인증 과정에서 공학교육 실천에 관한 연구)

  • Jang, Woo-Jin;Yoo, Jeong-Min;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Through the design and production of works for the third semester as a major unit, It is proposed the process of satisfying the graduation standards with the design and production process of the drone which can be applied to various mobile environments. Using the shape of Ring Propeller, it is made to be able to play both the role of generating lift as a propeller and the role of a wheel that touches the ground through the surface of the rim. In addition, the Servo Motor is used to convert the drive shaft of the motor to the correct angle according to the command. Then, based on the idea, the 3D printing is implemented to confirm the result of the configuration, and the circuit for driving the propulsion is designed and manufactured. As a result, the conversion of the desired propulsion system during air navigation and operation failed due to the weight increase of the propellant. It is confirmed that the size of the thrust and the tolerance limit of the ring propeller are the errors. Through these processes, it has been recognized to have experience of creative thinking and cooperation through engineering approach and comprehensive design, and confirmed to satisfy the graduation criteria by writing an engineering paper on the result.