• Title/Summary/Keyword: 3D Magnetic Circuit

Search Result 131, Processing Time 0.024 seconds

Inductance profile calculate and experiment of LSRM using magnetic equivalent circuit method (자기등가회로를 이용한 LSRM 인덕턴스 프로파일 산정 및 실험)

  • Jang, S.M.;Park, J.H.;Choi, J.Y.;Cho, H.W.;You, D.J.;Sung, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1150-1152
    • /
    • 2005
  • This paper deals with inductance profile of linear switched reluctance motor. Inductance profile of LSRM calculate at align and unalign position using magnetic equivalent circuit method. Magnetic equivalent circuit method of this paper used method of reference[3],[4], but this method used modification on account difference of design specification Also, analysis result compares with data that is derived through an experiment, and proved validity.

  • PDF

Characteristic analysis of contact-less energy transmission system using 3D finite element method (3차원 유한요소법을 이용한 비접촉 전력 전달 장치 특성 해석)

  • Woo Kyung il;Park Han Seok;Cho Yun Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.803-805
    • /
    • 2004
  • This paper proposes the calculation method of magnetic coupling coefficient of the contact-less energy transmission system by 3D finite element method with a variation of the secondary core positions. The primary, secondary self and leakage inductances and the capacitances of a resonant circuit are calculated by the finite element analysis results. From these values, the magnetic coupling coefficients are obtained. The secondary voltages and currents at the secondary core positions are calculated by using the resonant circuit and compared.

  • PDF

Characteristics Analysis of Permanent Magnet Linear Synchronous Motor in case of Skew of Permanent Magnet (영구자석형 선형 동기전동기의 영구자석 Skew시의 특성해석)

  • Jung, In-Soung;Hur, Jin;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.19-21
    • /
    • 1998
  • The problem in improving the positioning precision of a Permanent Magnet Linear Synchronous Motor (PMLSM) is the detent force caused by the interaction of the magnets with the teeth of stator. This paper presents 3-Dimensional Equivalent Magnetic Circuit Network Method (3-D EMCN) for the analysis of PMLSM. 3-D EMCN is a numerical analysis method which supplements magnetic equivalent circuit by using numerical technique. We analyzed the fields and forces of PMLSM in case of skewed magnet and axially segmented magnet construction.

  • PDF

A study on the A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure (황축교류자계에 의한 대기중에서의 교류 아아크의 이동에 관한 연구)

  • 전춘생;엄기환
    • 전기의세계
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 1975
  • This paper treats A.C. arc movement in a transverse A.C. magnetic field at atmospheric pressure with the purpose of selecting electrode materials and obtaining detailed data for design of A.C. air circuit breaker, plasma accelerator and plasma jet. Arc velocities in transverse magnetic field are measured by varying arc current, arc voltage, gap length, magnetic flux density and the erosion of electrode surface, which influence arc velocities. The main results are; 1)Arc velocities in transverse magnetic field have different values according to electrodes of various materials and decrease in a descending order of cold cathode, medium cathode and hot cathode. 2)Arc velocities in transverse magnetic field increases with arc current, arc voltage, gap length and magnetic flux densith and on the other hand decrease with the increase of electrode surface erosion. 3)D.C.arc velocity in D.C. magnetic field is higher than A.C. arc velocity in A.C. magnetic field of the same value.

  • PDF

Application of the Fault current detector to High speed circuit breaker (고속도 차단기에 대한 사고전류 감지기의 적용연구)

  • 이우영;송기동;박경엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.222-225
    • /
    • 2003
  • In this paper the performance of the high speed circuit breaker with fault current detector is described. The operating mechanism of circuit breaker in use is a magnetic actuator and a fault current detector is based on the DSP and A/D converter. The results show that 3-cycle is enough to interrupt the fault current and the more speed up performance is expected with on-going project.

  • PDF

Yoke Shape Design of Claw-Poles Stepping Motor Using Modified Magnetic Equivalent Circuit Method Including Magnetic Saturation Effect and Leakage Flux (자기 포화와 누설자속이 고려된 자기등가회로법을 이용한 클로우 폴 스테핑 모터의 요크 형상 설계)

  • Lee, Hyung-Woo;Cho, Su-Yeon;Bae, Jae-Nam;Son, Byoung-Ook;Park, Kyoung-Jin;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1942-1946
    • /
    • 2009
  • This paper presents a shape design process of Claw-Poles Stepping Motor(CPSM) using Modified Magnetic Equivalent Circuit Method(MMEC). Because this motor is adopted on low power devices, the motor size is a very small type. But it have a very strong permanent magnet. So magnetic saturation effect happens on yoke teeth of CPSM. Also this magnetic saturation effect causes more leakage flux component between yoke tooth have another pole. In this motor type, it is essential to design a shape of yoke teeth for avoiding the magnetic saturation effect and the leakage flux. In this paper, MMEC including the magnetic saturation effect and the leakage flux component was used for design process. Comparing with data calculated by using the MMEC and results analyzed by 3-D FEM, it could be stated that the design process with MMEC was reasonable. Finally, the model has the optimized shape of yoke teeth was compared with a conventional model for no-load Back EMF and torque at steady-state operation.

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

Comparison of Magnetic Resonant Coupling Wireless Power Transfer Systems within Aligned and Unaligned Positions and Determining their Limits

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.652-659
    • /
    • 2016
  • In this study, the efficiencies for both the angular aligned and unaligned positions of the receiver and transmitter coils of wireless power transfer (WPT) systems are examined. Some parameters of the equivalent circuit were calculated with Maxwell 3D software. The analytical solution of the circuit was calculated in MATLAB program through the composition of the system's mathematical modeling. The numerical solution of the system, however, was calculated using PSIM, which is circuit simulation software. In addition, with the use of the finite element method (FEM) in Maxwell 3D software, transient analysis of the three-dimensional system was performed. The efficiency of the system was estimated through the calculation of input and output power. The results demonstrated that power was efficiently transmitted to a certain extent in aligned and unaligned positions. The results also revealed that, for aligned positions, high efficiency with air gaps of 15-20 cm can be obtained and that the efficiency quickly dropped with air gaps of more than 20 cm. For spatially unaligned positions, it was observed that wireless power transfer could be realized with high efficiency with air gaps of up to 10 cm and that efficiency quickly dropped with air gaps of more than 10 cm.

Development of Equivalent Magnetic Circuit Network Method for 3 Dimentional Eddy current Analysis (3차원 와전류 해석을 위한 등가자기회로방법의 개발)

  • Hur, Jin;Hong, Jung-Pyo;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.228-233
    • /
    • 2002
  • A computational method for analysis of the 3 dimensional electro-magnetic induction problems has been developed. The developed method is capable of modeling the induced current and analyzing its characteristics using only scalar Potential at each node. A benchmark model of asymmetrical conductor with a hole is analyzed to verify the application of the developed method. The calculated value of magnetic flux density are compared with the measured value, and the results indicate that the developed method is valid. Also, Comparing with 3-D finite element method (FEM) results, we conformed effectiveness of the developed method for the accuracy and computation times.