• Title/Summary/Keyword: 3D Indoor Data Model

Search Result 58, Processing Time 0.025 seconds

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

Using a Spatial Databases for Indoor Location Based Services (실내위치기반서비스를 위한 공간데이터베이스 활용기법)

  • Cho, Yong-Joo;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.157-166
    • /
    • 2009
  • There is a growing interest in ubiquitous-related research and applications. Among them, GPS-based LBS have been developed and used actively. Recently, with the increase of large size buildings and disastrous events, indoor spaces are getting attention and related research activities are being carried out. Core technologies regarding indoor applications may include 3D indoor data modeling and localization sensor techniques that can integrate with indoor data. However, these technologies have not been standardized and established enough to be applied to indoor implementation. Thus, in this paper, we propose a method to build a relatively simple 3D indoor data modeling technique that can be applied to indoor location based applications. The proposed model takes the form of 2D-based multi-layered structure and has capability for 2D and 3D visualization. We tested three prototype applications using the proposed model; CA(cellular automata)-based 3D evacuation simulation, network-based routing, and indoor moving objects tracking using a stereo camera.

  • PDF

A Study on the Development of Indoor Spatial Data Model Using CityGML ADE (CityGML ADE를 이용한 실내공간 데이터모델 개발에 관한 연구)

  • Kang, Hye Young;Hwang, Jung Rae;Lee, Ji Yeong
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.11-21
    • /
    • 2013
  • W ith the recent increasing build and application for 3D spatial information, the importance of management and application for spatial information based on indoor space has been increased. Especially, Due to the increasing of the scale and complexity of the building according to the development of construction technologies several studies have been conducted to provide the services based on indoor space such as indoor navigation for disaster. Therefore, to efficient manage and service for information of complicated indoor space, it is necessary to extend and develop 3D spatial model and services that have been developed for outdoor space. In this paper, Indoor Spatial Data Model(ISDM) is developed to support building spatial information for complicated indoor space and location based services through topological information. ISDM contains a feature model which is a CityGML Application Domain Extension(ADE) model and a topology model that refers the IndoorGML.

Automated Construction of IndoorGML Data Using Point Cloud (포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축)

  • Kim, Sung-Hwan;Li, Ki-Joune
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • As the advancement of technologies on indoor positioning systems and measuring devices such as LiDAR (Light Detection And Ranging) and cameras, the demands on analyzing and searching indoor spaces and visualization services via virtual and augmented reality have rapidly increasing. To this end, it is necessary to model 3D objects from measured data from real-world structures. In addition, it is important to store these structured data in standardized formats to improve the applicability and interoperability. In this paper, we propose a method to construct IndoorGML data, which is an international standard for indoor modeling, from point cloud data acquired from LiDAR sensors. After examining considerations that should be addressed in IndoorGML data, we present a construction method, which consists of free space extraction and connectivity detection processes. With experimental results, we demonstrate that the proposed method can effectively reconstruct the 3D model from point cloud.

Developing a 3D Indoor Evacuation Simulator using a Spatial DBMS (공간 DBMS를 활용한 3차원 실내 대피 경로 안내 시스템)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Currently used 3D models, which are mostly focused on visualization of 3D objects and lack topological structure, have limitation in being used for 3D spatial analyses and applications. However, implementing a full topology for the indoor spatial objects is less practical due to the increase of complexity and computation time. This study suggests an alternative method to build a 3D indoor model with less complexity using a spatial DBMS. Storing spatial and nonspatial information of indoor spaces in DB tables enables faster queries, computation and analyses. Also it is possible to display them in 2D or 3D using the queried information. This study suggests a 2D-3D hybrid data model, which combines the 2D topology constructed from CAD floor plans and stored in a spatial DBMS and the 3D visualization functionality. This study showed the process to build the proposed model in a spatial DBMS and use spatial functions and queries to visualize in 2D and 3D. And, then, as an example application, it illustrated the process to build an indoor evacuation simulator.

  • PDF

Development of 3D Addressing Data Model Based on the IndoorGML (IndoorGML 기반 입체주소 데이터 모델 개발)

  • Kim, JI Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.591-598
    • /
    • 2020
  • The all revision of the Road Name Address Act, which contains the contents to be used by expanding the road name address as a means of indicationg the location, has been resloved by the National Assembly. Addresses will be assigned to large-sized facilities (3D mixed-use complex spaces). Here, the 3D (Three-dimensional) address is assigned an indoor path section in the inner passage, dividing the section at intervals. The 3D address will be built on the address information map. For 3D address, data should be built and managed for a 3D complex space(indoor space). Therefore, in this study, the object of the 3D address is defined based on the address conceptual model defined in the international standard, and the 3D address data model is proposed based on IndoorGML. To this, it is proposed as a method of mapping the Core and Navigation module of IndoorGML so that the entity of the 3D address can be expressed in IndoorGML. This study has a limitation in designing a 3D address data model only, but it is meaningful that it suggested a standard for constructing 3D address data in the future.

Developing Data Fusion Method for Indoor Space Modeling based on IndoorGML Core Module

  • Lee, Jiyeong;Kang, Hye Young;Kim, Yun Ji
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.31-44
    • /
    • 2014
  • According to the purpose of applications, the application program will utilize the most suitable data model and 3D modeling data would be generated based on the selected data model. In these reasons, there are various data sets to represent the same geographical features. The duplicated data sets bring serious problems in system interoperability and data compatibility issues, as well in finance issues of geo-spatial information industries. In order to overcome the problems, this study proposes a spatial data fusion method using topological relationships among spatial objects in the feature classes, called Topological Relation Model (TRM). The TRM is a spatial data fusion method implemented in application-level, which means that the geometric data generated by two different data models are used directly without any data exchange or conversion processes in an application system to provide indoor LBSs. The topological relationships are defined and described by the basic concepts of IndoorGML. After describing the concepts of TRM, experimental implementations of the proposed data fusion method in 3D GIS are presented. In the final section, the limitations of this study and further research are summarized.

Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data

  • Claridades, Alexis Richard;Lee, Jiyeong;Blanco, Ariel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.319-333
    • /
    • 2018
  • As human beings spend more time indoors, and with the growing complexity of indoor spaces, more focus is given to indoor spatial applications and services. 3D topological networks are used for various spatial applications that involve navigation indoors such as emergency evacuation, indoor positioning, and visualization. Manually generating indoor network data is impractical and prone to errors, yet current methods in automation need expensive sensors or datasets that are difficult and expensive to obtain and process. In this research, a methodology for semi-automatically generating a 3D indoor topological model based on IndoorGML (Indoor Geographic Markup Language) is proposed. The concept of Shooting Point is defined to accommodate the usage of omnidirectional images in generating IndoorGML data. Omnidirectional images were captured at selected Shooting Points in the building using a fisheye camera lens and rotator and indoor spaces are then identified using image processing implemented in Python. Relative positions of spaces obtained from CAD (Computer-Assisted Drawing) were used to generate 3D node-relation graphs representing adjacency, connectivity, and accessibility in the study area. Subspacing is performed to more accurately depict large indoor spaces and actual pedestrian movement. Since the images provide very realistic visualization, the topological relationships were used to link them to produce an indoor virtual tour.

Indoor 3D Modeling Approach based on Terrestrial LiDAR (지상라이다기반 실내 3차원 모델 구축 방안)

  • Hong, Sungchul;Park, Il-Suk;Heo, Joon;Choi, Hyunsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.527-532
    • /
    • 2012
  • Terrestrial LiDAR emerges as a main mapping technology for indoor 3D cadastre, cultural heritage conservation and, building management in that it provides fast, accurate, and reliable 3D data. In this paper, a new 3D modeling method consisting of segmentation stage and outline extraction stage is proposed to develop indoor 3D model from the terrestrial LiDAR. In the segmentation process, RANSAC and a refinement grid is used to identify points that belong to identical planar planes. In the outline tracing process, a tracing grid and a data conversion method are used to extract outlines of indoor 3D models. However, despite of an improvement of productivity, the proposed approach requires an optimization process to adjust parameters such as a threshold of the RANSAC and sizes of the refinement and outline extraction grids. Furthermore, it is required to model curvilinear and rounded shape of the indoor structures.

(A) study on location correction method of indoor/outdoor 3D model through data integration of BIM and GIS (BIM과 GIS 데이터 융합을 통한 실내외 3차원 모델 위치보정 방안 연구)

  • Kim, Ji-Eun;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.56-62
    • /
    • 2017
  • As the need for 3D spatial information increases, many local governments and related industries are establishing map-based 3D spatial information services and offering them to users. In these services, positional accuracy is one of the most important factors determining their applicability to specific tasks. This study studied the location correction method between indoor and outdoor 3D spatial information through the construction of modeling data on a BIM/GIS platform. First, we selected the sites and processed the BIM/GIS data construction with 3 steps. When connecting the BIM model including indoor spatial data and 3D texturing model based on ortho images, mismatches occurred, so we proposed a location correction method. Using the conversion algorithm, the relative coordinate-based BIM data were converted to the absolute positions and then relocated by means of the texturing data on the BIM/GIS platform.