• Title/Summary/Keyword: 3D Imaging

Search Result 1,507, Processing Time 0.036 seconds

MR Neurography: Current Several Issues for Novice Radiologists (자기공명영상 신경조영술: 경험이 적은 영상의학과 의사가 이해해야 할 몇 가지 쟁점들)

  • Dong-ho Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.81-100
    • /
    • 2020
  • Magnetic resonance neurography (MRN) has been increasingly used in recent years for the assessment of peripheral neuropathies. Fat suppression T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) have typically been used to provide high contrast MRN. Isotropic 3-dimensional (3D) sequences with fast spin echo, post-processing imaging techniques, and fast imaging methods, among others, allow good visualization of peripheral nerves that have a small diameter, complex anatomy, and oblique course within a reasonable scan time. However, there are still several issues when performing high contrast and high resolution MRN including standard sequence; fat saturation techniques; balance between resolution, field of view, and slice thickness; post-processing techniques; 2D vs. 3D image acquisition; different T2 contrasts between proximal and distal nerves; high T2 signal intensity of adjacent veins or joint fluid; geometric distortion; and appropriate p-values on DWI. The proper understanding of these issues will help novice radiologists evaluate peripheral neuropathies using MRN.

Convolutional Neural Network Based Multi-feature Fusion for Non-rigid 3D Model Retrieval

  • Zeng, Hui;Liu, Yanrong;Li, Siqi;Che, JianYong;Wang, Xiuqing
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.176-190
    • /
    • 2018
  • This paper presents a novel convolutional neural network based multi-feature fusion learning method for non-rigid 3D model retrieval, which can investigate the useful discriminative information of the heat kernel signature (HKS) descriptor and the wave kernel signature (WKS) descriptor. At first, we compute the 2D shape distributions of the two kinds of descriptors to represent the 3D model and use them as the input to the networks. Then we construct two convolutional neural networks for the HKS distribution and the WKS distribution separately, and use the multi-feature fusion layer to connect them. The fusion layer not only can exploit more discriminative characteristics of the two descriptors, but also can complement the correlated information between the two kinds of descriptors. Furthermore, to further improve the performance of the description ability, the cross-connected layer is built to combine the low-level features with high-level features. Extensive experiments have validated the effectiveness of the designed multi-feature fusion learning method.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.

High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton

  • Lee, SangYun;Kim, Kyoohyun;Mubarok, Adam;Panduwirawan, Adisetyo;Lee, KyeoReh;Lee, Shinhwa;Park, HyunJoo;Park, YongKeun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.691-697
    • /
    • 2014
  • Optical measurements of the morphological and biochemical imaging of phytoplankton are presented. Employing quantitative phase imaging techniques, 3-D refractive index maps and high-resolution 2-D quantitative phase images of individual live phytoplankton are simultaneously obtained without exogenous labeling agents. In addition, biochemical information of individual phytoplankton including volume, mass, and density of individual phytoplankton are also quantitatively obtained from the measured refractive index distributions. We expect the present method to become a powerful tool for the study of phytoplankton.

Performance Analysis of Compression Techniques Using DCT and DWT on Elemental Images in 3D Integral Imaging (3 차원 집적영상에서의 요소영상 압축을 위한 DCT 및 DWT 성능분석)

  • Muniraj, Inbarasan;Moon, In-Kyu
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.340-342
    • /
    • 2012
  • Integral Imaging (II) is an attractive technique for three-dimensional (3D) image, video display and recording. Inherently, the high resolution II requires an enormous amount of data for storing and transmitting of 3D scenes. Compression techniques attempt to evade this issue. In this study, we made a comparative performance analysis of popular transforming/compression techniques such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT) in order to compress 3D-II. The standard baseline JPEG (Joint Photographic Experts Group) using DCT and JPEG 2000 using DWT methods were manipulated in our experiments. In our analysis, we have shown that the DWT based JPEG 2000 compression methodology could be a good alternative for 3D-II.

  • PDF

Usefullness with 3D CT Angiography in Microsurgical Reconstruction (미세수술을 이용한 하지의 재건시 삼차원 컴퓨터 혈관조영술의 유용성)

  • Sung, Yong Duck;Kim, Hyo Heon
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.175-180
    • /
    • 2006
  • Preoperative angiography is frequently used in the planning of microsurgical reconstruction for identification of vascular abnormality that influence the planning of operation. But, recently 3D CT angiography is considered as new technique that can provide detailed information about vascular anatomy as well as soft and bony tissue without the risks of invasive angiography. 3D CT angiograms were performed in 19 patients before microsurgical reconstruction for the lower extremity and hand between May of 2003 and Oct of 2004. Sixteen of the studies were of the donor site and all of 19 studies were of the recipient site. No complications were found from the 3D CT angiograms. In one case of the bone exposed open wound, the injury of anterior tibial artery was identified and the zone of injury was adequately demonstrated. With the improvement in quality of CT imaging, 3D CT angiograms may provide a favorable alternative to invasive angiography. It is capable of providing high-resolution, three dimensional vascular imaging without the need for arterial puncture and prolonged post-procedure observation. The relation among blood vessels, bones, and soft tissue is well demonstrated in 3D CT angiogram. Also The acquisition time and examination cost were considerably lower in comparison with invasive angiography. In conclusion, this study demonstrates that 3D CT angiography may provide accurate, safe, and cost-effective preoperative imaging. The 3D CT angiography with relatively low morbidity, low cost, ease of image acquisition can have an broader role in microsurgical reconstructive surgery.

Measurement Method of the Masseter Muscle Volume Using 3D Computed Tomography (3D CT를 이용한 교근의 부피측정)

  • Baek, Jung Hwan;Choi, Jong Woo;Yoo, Sun Kuk;Kim, Yong Oock;Park, Beyoung Yun
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.589-592
    • /
    • 2005
  • Since G.N. Hounsfield's clinical use of computed tomography in 1971, digital imaging technique using computers has shown an eye opening progress. Progress has made 3-dimensional understanding of not only facial bones but muscles and other connective tissues possible through 3-dimensional reconstruction of preexisting tomographical images. Also, quantitative analysis of density, distance, volume has become possible, allowing objective analysis of preoperative and postoperative states through imaging. The authors measured the masseter muscle volume of 20 normal individuals and 8 female patients through 3-D reconstructive CT imaging and made a statistical analysis of the measurements. The method used in our study may be applied to the diagnosis of disease causing the change of the facial volume and presurgical design as a useful tool to provide objective information on the evaluation of surgery outcome.

Convertible 3D-2D display by use of integral imaging system with plastic fiber array

  • Kim, Young-Min;Choi, Hee-Jin;Cho, Seong-Woo;Kim, Yun-Hee;Kim, Joo-Hwan;Park, Gil-Bae;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1482-1485
    • /
    • 2007
  • A three-dimensional (3D)-two-dimensional (2D) convertible display system using a plastic fiber array is proposed. The proposed system has an advantage of making use of a light source for 3D image from an arbitrary location. The optical efficiency of 3D images in the proposed system is enhanced compared with previous research.

  • PDF

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.