• Title/Summary/Keyword: 3D Image Map

Search Result 459, Processing Time 0.023 seconds

Experimental Study on Satellite Image Restoration for Vanished Area by Dam Construction

  • Yeon, Sang-Ho;Hong, Il-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1424-1426
    • /
    • 2003
  • It will be a real good news for the people who were lost their hometown by the construction of a large dam to be restored to the former state. Focused on Cheung-Pyung around where most part were flooded by the Chungju large Dam founded in early 1980s, we used Remote Sensing Technique in this study in order to restore topographical features before the flood with 3 dimensional effects. We gathered comparatively good satellite photos and remotely sensed digital images, then we made a new color image from these and the topographical map which had been made before the flood. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as harmonizing current contour lines with the map. That could be a perfect 3D image of Cheung-Pyung around before when it had been flood by making perspective images from all directions, north, south, east and west, for showing there in three dimensions. Also, flying simulation we made for close visiting can bring us to experience their real space at that time.

  • PDF

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.

Hybrid Down-Sampling Method of Depth Map Based on Moving Objects (움직임 객체 기반의 하이브리드 깊이 맵 다운샘플링 기법)

  • Kim, Tae-Woo;Kim, Jung Hun;Park, Myung Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.918-926
    • /
    • 2012
  • In 3D video transmission, a depth map being used for depth image based rendering (DIBR) is generally compressed by reducing resolution for coding efficiency. Errors in resolution reduction are recovered by an appropriate up-sampling method after decoding. However, most previous works only focus on up-sampling techniques to reduce errors. In this paper, we propose a novel down-sampling technique of depth map that applies different down-sampling rates on moving objects and background in order to enhance human perceptual quality. Experimental results demonstrate that the proposed scheme provides both higher visual quality and peak signal-to-noise ratio (PSNR). Also, our method is compatible with other up-sampling techniques.

GPGPU based Depth Image Enhancement Algorithm (GPGPU 기반의 깊이 영상 화질 개선 기법)

  • Han, Jae-Young;Ko, Jin-Woong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2927-2936
    • /
    • 2013
  • In this paper, we propose a noise reduction and hole removal algorithm in order to improve the quality of depth images when they are used for creating 3D contents. In the proposed algorithm, the depth image and the corresponding color image are both used. First, an intensity image is generated by converting the RGB color space into the HSI color space. By estimating the difference of distance and depth between reference and neighbor pixels from the depth image and difference of intensity values from the color image, they are used to remove noise in the proposed algorithm. Then, the proposed hole filling method fills the detected holes with the difference of euclidean distance and intensity values between reference and neighbor pixels from the color image. Finally, we apply a parallel structure of GPGPU to the proposed algorithm to speed-up its processing time for real-time applications. The experimental results show that the proposed algorithm performs better than other conventional algorithms. Especially, the proposed algorithm is more effective in reducing edge blurring effect and removing noise and holes.

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

A Study on the Construction Technique of DEM Using a Commercial Map (상용지도를 이용한 DEM 구성기법에 관한 연구)

  • 박성욱;최관순;강치우;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • This paper presents a method of the constructing DEM(Digital Elevation Model) from the image data acquired from a commercial map using the scanner. Data acquistion, mark elimination, linking the broken line, elevation interpolation and 3D display processing are performed and the results are satisfatory.

Applying differential techniques for 2D/3D video conversion to the objects grouped by depth information (2D/3D 동영상 변환을 위한 그룹화된 객체별 깊이 정보의 차등 적용 기법)

  • Han, Sung-Ho;Hong, Yeong-Pyo;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1302-1309
    • /
    • 2012
  • In this paper, we propose applying differential techniques for 2D/3D video conversion to the objects grouped by depth information. One of the problems converting 2D images to 3D images using the technique tracking the motion of pixels is that objects not moving between adjacent frames do not give any depth information. This problem can be solved by applying relative height cue only to the objects which have no moving information between frames, after the process of splitting the background and objects and extracting depth information using motion vectors between objects. Using this technique all the background and object can have their own depth information. This proposed method is used to generate depth map to generate 3D images using DIBR(Depth Image Based Rendering) and verified that the objects which have no movement between frames also had depth information.

Environment Map Based Disparity (환경맵 기반 디스페러티)

  • Ryoo Seung-Taek
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.109-118
    • /
    • 2006
  • In this paper, we suggest the environment based disparity method that calculate the depth value of the objects from environment maps. This method using the disparity of the environment map can calculate the depth value from two environment map that acquire at different viewpoint. This method can decide the visibility of the object whether it is occluded others or not. Also, we can analogize the depth value of the object that does not relate the reference plane(in case of being in the air) and make three dimensional environment model using the proposed method

  • PDF

CNN-based Shadow Detection Method using Height map in 3D Virtual City Model (3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법)

  • Yoon, Hee Jin;Kim, Ju Wan;Jang, In Sung;Lee, Byung-Dai;Kim, Nam-Gi
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.55-63
    • /
    • 2019
  • Recently, the use of real-world image data has been increasing to express realistic virtual environments in various application fields such as education, manufacturing, and construction. In particular, with increasing interest in digital twins like smart cities, realistic 3D urban models are being built using real-world images, such as aerial images. However, the captured aerial image includes shadows from the sun, and the 3D city model including the shadows has a problem of distorting and expressing information to the user. Many studies have been conducted to remove the shadow, but it is recognized as a challenging problem that is still difficult to solve. In this paper, we construct a virtual environment dataset including the height map of buildings using 3D spatial information provided by VWorld, and We propose a new shadow detection method using height map and deep learning. According to the experimental results, We can observed that the shadow detection error rate is reduced when using the height map.

Image-based Localization Recognition System for Indoor Autonomous Navigation (실내 자율 비행을 위한 영상 기반의 위치 인식 시스템)

  • Moon, SungTae;Cho, Dong-Hyun;Han, Sang-Hyuck
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • Recently, the localization recognition system research has been studied using various sensors according to increased interest in autonomous navigation flight. In case of indoor environment which cannot support GPS information, we have to look for another way to recognize current position. The Image-based localization recognition system has been interested although there are lots of way to know current pose. In this paper, we explain the localization recognition system based on mark and implementation of autonomous navigation flight. In order to apply to real environment which cannot support marks, localization based on real-time 3D map building is discussed.