• Title/Summary/Keyword: 3D Hologram

Search Result 152, Processing Time 0.026 seconds

Hologram Generation with Random Phase based on 3D Volumetric Model (3D 체적형 모델 기반의 랜덤 위상을 갖는 홀로그램 생성)

  • Lee, Sol;Kim, Kyung-Jin;Kim, Jin-Kyum;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.323-324
    • /
    • 2020
  • 논문에서는 3D 체적형 모델을 이용하여 홀로그램에 랜덤 위상 효과를 주는 방법을 제안한다. CGH(Computer Generated Hologram)에서 랜덤 위상의 추가는 실제 촬영하여 획득한 홀로그램에서 물체 표면의 난반사에 대한 영향을 고려한 것이다. 이 랜덤 위상은 생성한 홀로그램의 광 시야각 확장 효과가 있다. 하지만 이것은 랜덤으로 발생하기 때문에 홀로그램 시퀀스를 생성할 때 같은 객체 표면에 대해서 고정된 효과를 줄 수 없다. 본 논문에서는 CGH를 진행할 때 물체의 고유한 랜덤 위상 추가를 위해 3D 체적형 모델을 사용하는 방법을 제안한다.

  • PDF

Hologram and Receptor-Guided 3D QSAR Analysis of Anilinobipyridine JNK3 Inhibitors

  • Chung, Jae-Yoon;Cho, Art-E;Hah, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2739-2748
    • /
    • 2009
  • Hologram and three dimensional quantitative structure activity relationship (3D QSAR) studies for a series of anilinobipyridine JNK3 inhibitors were performed using various alignment-based comparative molecular field analysis (COMFA) and comparative molecular similarity indices analysis (CoMSIA). The in vitro JNK3 inhibitory activity exhibited a strong correlation with steric and electrostatic factors of the molecules. Using four different types of alignments, the best model was selected based on the statistical significance of CoMFA ($q_2\;=\;0.728,\;r_2\;=\;0.865$), CoMSIA ($q_2\;=\;0.706,\;r_2\;=\;0.960$) and Hologram QSAR (HQSAR: $q_2\;=\;0.838,\;r_2\;=\;0.935$). The graphical analysis of produced CoMFA and CoMSIA contour maps in the active site indicated that steric and electrostatic interactions with key residues are crucial for potency and selectivity of JNK3 inhibitors. The HQSAR analysis showed a similar qualitative conclusion. We believe these findings could be utilized for further development of more potent and selective JNK3 inhibitors.

Recent Status of JPEG Pleno Holography Standardization (JPEG Pleno Holography 표준화 현황)

  • K.-J. Oh;Y. Lim;H.-G. Choo
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • Holography is the most promising 3D imaging technology to faithfully record and reproduce light information. In addition, it is widely explored in metrology for applications such as microscopy and tomography because it can accurately measure 3D shapes. However, the data size of a digital hologram is very large, and the data characteristics are notably different from those of conventional 2D images. The Joint Photographic Experts Group (JPEG) is a group of experts from the International Organization for Standardization/International Electrotechnical Commission. This group develops and maintains standards for still image compression. In 2014, the JPEG released a new standard for 3D image compression called JPEG Pleno to represent light fields, point clouds, and holograms. Among them, JPEG Pleno Holography is the first international standard for hologram compression. We review recent advances in JPEG Pleno Holography standardization and discuss future directions of development.

Research and Standardization Trends of Digital Hologram Compression (디지털 홀로그램 압축 기술 및 표준화 동향)

  • Oh, K.J.;Park, J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.145-155
    • /
    • 2019
  • Holography is a technique that can acquire and reproduce 3D objects nearly perfectly by representing both the amplitude and phase of light. Recently, digital holography has received considerable attention because it is simpler than analog holography from acquisition to reproduction. The data size of the digital hologram increases tremendously as the quality of digital holograms depends on their pixel pitch and resolution. Hence, efficient compression is necessary to realize holographic imaging services. In this report, we introduce recent digital hologram compression techniques and JPEG Pleno holography, which is the first international standardization activity for digital hologram compression. Furthermore, we discuss the future of this field.

Recent Technologies for the Acquisition and Processing of 3D Images Based on Deep Learning (딥러닝기반 입체 영상의 획득 및 처리 기술 동향)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.112-122
    • /
    • 2020
  • In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.

3-D Display;Electro-holography Based

  • Son, Jung-Young;Kim, Dae-Sik;Cha, Kyung-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1553-1560
    • /
    • 2006
  • The idea of displaying hologram electronically has been existed since mid $1960^{th}$. But it is still in the beginning stage due to the lacks of proper means of displaying and recording, which will bear the large amount of data contained in the hologram though holographic video and digital holography have demonstrated the possibility of displaying and photographing hologram electronically. It is expected that holography based 3 dimensional imaging system will be introduced much later than that on multiview 3 dimensional imaging methods which are being developed to generate more realistic and natural image than high definition plane images.

  • PDF

FImplementation of RF Controller based on Digital System for TRS Repeater (실시간 디지털 홀로그래피를 위한 고성능 CGH프로세서)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1424-1433
    • /
    • 2007
  • In this paper, we propose a hardware architecture to generate digital hologram using the modified CGH (Computer Generated Hologram) algorithm for hardware implementation and design to FPGA (Field Programmable Gate Array) platform. After analyzing the CGH algorithm, we propose an architecture of CGH cell which efficiently products digital hologram, and design CGH Kernel from configuring CGH Cell. Finally we implement CGH Processor using CGH Kernel, SDRAM Controller, DMA, etc. Performance of the proposed hardware can be proportionally increased through simply addition of CGH Cell in CGH Kernel, since a CGH Cell has operational independency. The proposed hardware was implemented using XC2VP70 FPGA of Xilinx and was stably operated in 200MHz clock frequency. It take 0.205 second for generating $1,280{\times}1,024$ digital hologram from 3 dimensional object which has 40,000 light sources.

Display System of Ultra-view Image using Hybrid Image Pickup System (하이브리드 영상획득 장치를 이용한 초다시점 영상 디스플레이 시스템)

  • Choi, Hyun-Jun;Jang, Seok-Woo;Lee, Suk-Yun;Kim, Jae-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1285-1290
    • /
    • 2012
  • People have been interested in the next generation media and service over 3D by development of 3D industry and generalization of 3D-related content and equipment in recent year. Many researchers predict that a strong candidate is digital hologram. Holographic technology is classified to capture(or generation), processing, and display(or reconstruction). This paper discusses the digital holographic display system using hybrid image pickup system and proposes a new structure of digital holographic display system. Through the proposed method a digital hologram can be scalably serviced according to display equipments with various resolutions, computing power of decoding part, and network bandwidth.

A Technique for Interpreting and Adjusting Depth Information of each Plane by Applying an Object Detection Algorithm to Multi-plane Light-field Image Converted from Hologram Image (Light-field 이미지로 변환된 다중 평면 홀로그램 영상에 대해 객체 검출 알고리즘을 적용한 평면별 객체의 깊이 정보 해석 및 조절 기법)

  • Young-Gyu Bae;Dong-Ha Shin;Seung-Yeol Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2023
  • Directly converting the focal depth and image size of computer-generated-hologram (CGH), which is obtained by calculating the interference pattern of light from the 3D image, is known to be quite difficult because of the less similarity between the CGH and the original image. This paper proposes a method for separately converting the each of focal length of the given CGH, which is composed of multi-depth images. Firstly, the proposed technique converts the 3D image reproduced from the CGH into a Light-Field (LF) image composed of a set of 2D images observed from various angles, and the positions of the moving objects for each observed views are checked using an object detection algorithm YOLOv5 (You-Only-Look-Once-version-5). After that, by adjusting the positions of objects, the depth-transformed LF image and CGH are generated. Numerical simulations and experimental results show that the proposed technique can change the focal length within a range of about 3 cm without significant loss of the image quality when applied to the image which have original depth of 10 cm, with a spatial light modulator which has a pixel size of 3.6 ㎛ and a resolution of 3840⨯2160.