KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3136-3150
/
2015
A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.
본 논문은 비마커 증강현실(Marker-less Augmented Reality)을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 알고리즘 기반 손 자세의 추정 기법을 제안한다. 기존 비마커 증강현실의 연구는 손을 검출하기 위해 단순한 실험 배경에서 피부색상 기반으로 손 영역을 검출한다. 그리고 손가락의 특징점을 검출하여 손의 자세를 추정하므로 카메라에서 검출할 수 있는 손 자세에 많은 제약이 따른다. 하지만, 본 논문은 3D 센서의 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기법을 사용함으로써 복잡한 배경에서 손을 검출할 수 있으며 손 자세를 크게 제약하지 않고 손 영역의 중심점과 임의의 2점의 깊이 값만으로 정확한 손 자세를 추정한다. 제안하는 Mean Shift 추적 기법은 피부 색상정보만 사용하는 방법보다 약 50픽셀 이하의 거리 오차를 보였다. 그리고 증강실험에서 제안하는 손 자세 추정 방법은 복잡한 실험환경에서도 마커 기반 방법과 유사한 성능의 실험결과를 보였다.
손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.
Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.
본 논문에서는 증강현실 환경에서 등장하는 3차원 공간상의 객체를 카메라와 손을 사용하여 조작할 수 있는 인터페이스를 제안한다. 일반적으로 3차원 움직임을 검출하기 위해서 마커를 사용하지만, 이러한 경우에는 객체를 등록하기 위해서 마커가 영상 내에 있어야 하며 추가적인 장비를 사용함으로서 몰입감의 저하를 초래한다. 이것을 극복하기 위해서 본 연구에서는 손을 하나의 평면으로 변환하고 손 모양의 변화를 검출하여 마커를 대체하는 방법을 제안한다. 또한 조명으로 인한 손의 색상 변화에 따른 객체의 등록 위치 변화를 칼만 필터를 적용하여 추적하였다. 실험결과, 제안한 알고리즘은 손의 원활한 움직임에 의한 객체의 3차원 조작이 가능함을 보였다.
IEIE Transactions on Smart Processing and Computing
/
제4권6호
/
pp.407-412
/
2015
In model-based tracking, an accurate 3D model of a target object or scene is mostly assumed to be known or given in advance, but the accuracy of the model should be guaranteed for accurate pose estimation. In many application domains, on the other hand, end users are not highly distracted by tracking errors from certain levels of modeling errors. In this paper, we examine perceptual tracking errors, which are predominantly caused by modeling errors, on subjective evaluation and compare them to computational tracking errors. We also discuss the tolerance of modeling errors by analyzing their permissible ranges.
손동작을 인식하는 연구가 오랫동안 이뤄져 왔지만 대개의 시스템들이 값비싼 깊이 카메라를 사용하거나 여러 개의 카메라를 사용해 분석하는 등 그 비용이 크며 작동이 가능한 작업 공간이 지극히 제한적이었다. 본 논문에서는 가전제품을 원격 제어하기 위한 목적으로 두 개의 회전 모터를 사용해 작업 공간을 확대하고 저렴한 일반 카메라를 사용해서 효율적으로 손동작을 인식하기 위한 시스템을 제안한다. 이 시스템은 입력된 카메라의 자세 정보와 이미지상의 2차원적 손가락 위치 정보를 이용하여 3차원 궤적을 추정하고 이를 동작 평면으로 투영시켜 의미 있는 선형 동작 패턴으로 복원한다. 또한 본 논문에서는 개발된 시스템을 테스트하여 주어진 목적에 맞는 정확도를 가지는 작업 영역을 정의한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.