• 제목/요약/키워드: 3D Hand Pose Tracking

검색결과 7건 처리시간 0.026초

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정 (The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality)

  • 이선형;한헌수;한영준
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.155-166
    • /
    • 2012
  • 본 논문은 비마커 증강현실(Marker-less Augmented Reality)을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 알고리즘 기반 손 자세의 추정 기법을 제안한다. 기존 비마커 증강현실의 연구는 손을 검출하기 위해 단순한 실험 배경에서 피부색상 기반으로 손 영역을 검출한다. 그리고 손가락의 특징점을 검출하여 손의 자세를 추정하므로 카메라에서 검출할 수 있는 손 자세에 많은 제약이 따른다. 하지만, 본 논문은 3D 센서의 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기법을 사용함으로써 복잡한 배경에서 손을 검출할 수 있으며 손 자세를 크게 제약하지 않고 손 영역의 중심점과 임의의 2점의 깊이 값만으로 정확한 손 자세를 추정한다. 제안하는 Mean Shift 추적 기법은 피부 색상정보만 사용하는 방법보다 약 50픽셀 이하의 거리 오차를 보였다. 그리고 증강실험에서 제안하는 손 자세 추정 방법은 복잡한 실험환경에서도 마커 기반 방법과 유사한 성능의 실험결과를 보였다.

3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식 (Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling)

  • 석흥일;이지홍;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권12호
    • /
    • pp.780-788
    • /
    • 2008
  • 손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • 림빈보니카;성낙준;마준;최유주;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

증강현실에서 3D 객체 조작을 위한 손동작 인터페이스 (Hand Gesture Interface for Manipulating 3D Objects in Augmented Reality)

  • 박건희;이귀상
    • 한국콘텐츠학회논문지
    • /
    • 제10권5호
    • /
    • pp.20-28
    • /
    • 2010
  • 본 논문에서는 증강현실 환경에서 등장하는 3차원 공간상의 객체를 카메라와 손을 사용하여 조작할 수 있는 인터페이스를 제안한다. 일반적으로 3차원 움직임을 검출하기 위해서 마커를 사용하지만, 이러한 경우에는 객체를 등록하기 위해서 마커가 영상 내에 있어야 하며 추가적인 장비를 사용함으로서 몰입감의 저하를 초래한다. 이것을 극복하기 위해서 본 연구에서는 손을 하나의 평면으로 변환하고 손 모양의 변화를 검출하여 마커를 대체하는 방법을 제안한다. 또한 조명으로 인한 손의 색상 변화에 따른 객체의 등록 위치 변화를 칼만 필터를 적용하여 추적하였다. 실험결과, 제안한 알고리즘은 손의 원활한 움직임에 의한 객체의 3차원 조작이 가능함을 보였다.

Subjective Evaluation on Perceptual Tracking Errors from Modeling Errors in Model-Based Tracking

  • Rhee, Eun Joo;Park, Jungsik;Seo, Byung-Kuk;Park, Jong-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.407-412
    • /
    • 2015
  • In model-based tracking, an accurate 3D model of a target object or scene is mostly assumed to be known or given in advance, but the accuracy of the model should be guaranteed for accurate pose estimation. In many application domains, on the other hand, end users are not highly distracted by tracking errors from certain levels of modeling errors. In this paper, we examine perceptual tracking errors, which are predominantly caused by modeling errors, on subjective evaluation and compare them to computational tracking errors. We also discuss the tolerance of modeling errors by analyzing their permissible ranges.

실시간 손동작 인식을 위한 동작 평면 추정 (Motion Plane Estimation for Real-Time Hand Motion Recognition)

  • 정승대;장경호;정순기
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.347-358
    • /
    • 2009
  • 손동작을 인식하는 연구가 오랫동안 이뤄져 왔지만 대개의 시스템들이 값비싼 깊이 카메라를 사용하거나 여러 개의 카메라를 사용해 분석하는 등 그 비용이 크며 작동이 가능한 작업 공간이 지극히 제한적이었다. 본 논문에서는 가전제품을 원격 제어하기 위한 목적으로 두 개의 회전 모터를 사용해 작업 공간을 확대하고 저렴한 일반 카메라를 사용해서 효율적으로 손동작을 인식하기 위한 시스템을 제안한다. 이 시스템은 입력된 카메라의 자세 정보와 이미지상의 2차원적 손가락 위치 정보를 이용하여 3차원 궤적을 추정하고 이를 동작 평면으로 투영시켜 의미 있는 선형 동작 패턴으로 복원한다. 또한 본 논문에서는 개발된 시스템을 테스트하여 주어진 목적에 맞는 정확도를 가지는 작업 영역을 정의한다.