• Title/Summary/Keyword: 3D Fluid Simulation

Search Result 315, Processing Time 0.027 seconds

Design and Assessment of an Oil-treatment Process for Bitumen Separation (비투멘 유체 분리를 위한 오일처리공정의 설계와 평가)

  • Jeong, Moon;Lee, Sang-Jun;Shin, Heung-Sik;Jo, Eun-Bi;Hwang, In-Ju;Kang, Choon-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The purpose of this paper is to define criteria to be used as part of the engineering design for an oil sands plant equipped with the steam assisted gravity drainage process. In this effort, the oil treatment process of an oil sands plant on a pilot scale was focused for detailed investigation. The thermodynamic properties of the process fluid, which is mainly composed of bitumen and water, were estimated with the CPA model. The commercial tool aspen HYSYS was used for the analysis throughout this work along with the provided input data and some necessary assumptions. From the simulation results, the heat and mass balances for a 300 BPD plant were established in order to define standard data for its modular design. In particular, the basis of design for equipment size, heat transfer areas, capital cost and operation cost was extensively discussed.

Study on Multi-Dimensional Simulation of the Flow and Filtration Characteristics in Diesel Particulate Filters (DPF의 배기가스 유동 및 포집에 관한 다차원 모델링 연구)

  • Kim, Dong-Kyun;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.60-68
    • /
    • 2010
  • In order to understand the flow and filtration characteristics in a wall-flow type DPF(Diesel Particulate Filter), 0-D, 1-D, and 3-D simulations are preformed. In this paper, three model are explained and validated with each other. Based on the comparisons with 1-D and 3-D results for the steady state solution, 3-D CFD analysis is preferable to 1-D for the prediction of wall velocity at the inlet and exit plane. Because PM loading process is transient state phenomena, the combination of full 3-D and time dependent simulation is crucial for the configuration of wall channels. New coupling technique, which is the connection between calculated permeability from 0-D lumped parameter model and UDF(User Defined Functions) of main solver, is proposed for the realisti

Three-Dimensional Numerical Simulation of Intrusive Density Currents

  • An, Sangdo
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1223-1232
    • /
    • 2014
  • Density currents have been easily observed in environmental flows, for instance turbidity currents and pollutant plumes in the oceans and rivers. In this study, we explored the propagation dynamics of density currents using the FLOW-3D computational fluid dynamics code. The renormalization group (RNG) $k-{\varepsilon}$ scheme, a turbulence numerical technique, is employed in a Reynold-averaged Navier-Stokes framework (RANS). The numerical simulations focused on two different types of intrusive density flows: (1) propagating into a two-layer ambient fluid; (2) propagating into a linearly stratified fluid. In the study of intrusive density flows into a two-layer ambient fluid, intrusive speeds were compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting propagation speed of the density currents. We also numerically reproduced the effect of the ratio of current depth to the overall depth of fluid. The numerical model provided excellent agreement with the analytical values. It was also clearly demonstrated that RNG $k-{\varepsilon}$ scheme within RANS framework is able to accurately simulate the dynamics of density currents. Simulations intruding into a continuously stratified fluid with the various buoyancy frequencies are carried out. These simulations demonstrate that three different propagation patterns can be developed according to the value of $h_n/H$ : (1) underflows developed with $h_n/H=0$ ; (2) overflows developed when $h_n/H=1$ ; (3) intrusive interflow occurred with the condition of 0 < $h_n/H$ < 1.

The application of BEM in the Membrane structures interaction with simplified wind

  • Xu, Wen;Ye, Jihong;Shan, Jian
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.349-365
    • /
    • 2009
  • Membrane structures are quite sensitive to wind and therefore the fluid-solid interaction can not be neglected in dynamic analysis. A boundary element method (BEM) for 3D simulation of wind-structure interaction in tensile membrane structures is presented in this paper. The flow is treated as incompressible and potential. The flow field is solved with boundary element method codes and structural simulation is performed by finite element method software ANSYS. The nonlinear equations system is solved iteratively, with segregated treatment of the fluid and structure equations. Furthermore this method has been demonstrated to be effective by typical examples. Besides, the influence of several parameters on the wind-structure interaction, such as rise-span ratio, prestress and the wind velocity are investigated according to this method. The results provide experience in wind resistant researches and engineering.

A Study on the Flow Characteristic of High Pressure 3/2-Way Valve for a Ship Engine (선박 엔진용 고압 3/2-Way 밸브의 유동특성 연구)

  • Park, Si-Beom;Kim, Jin-Mi;Lee, Chul-Jae;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2012
  • The 3/2-way valve supplies the high pressure air to ship engine for starting engine. In this paper, the high pressure 3/2 way valve for ship engine has the goal as reverse engineering by searching the fluid characteristic at this valve. The reverse engineering of 3/2-way valve is measured directly by Verier-calipers and is compared with 3D scanner. The fluid characteristic in this valve is used for a simulation method by ANSYS CFX 12.1. On the contrary, discs and the shaft are as the important components on numerical simulation by controlling the air flow at this valve. The fluid characteristics are seen to make high velocity and complicated vortex around the shaft. And the flow coefficient is calculated in order to apply for industrial field.

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

Case Study on Hydroelastic Vibration of Plate for Various Bounded Fluid Field (유체장 변화에 따른 사각형 탱크의 진동에 관한 연구)

  • Choi, S.H.;Jo, H.D.;Kim, K.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.3-9
    • /
    • 2007
  • In this paper, a numerical case study is carried out on the hydroelastic vibration of rectangular plate with various fluid field. It is assumed that the tank wall is clamped along the plate edges. The VMM(virtual mass method) of Nastran is used for the simulation of fluid domain and calculating natural frequency of fluid-coupled structure. In this paper, natural frequencies are calculated and compared for rectangular plates with various fluid field such as infinite fluid and finite fluid, length change of finite fluid field and various fluid contacting conditions.

Numerical Simulation of Three Dimensional Free Surface Flow (3차원 자유표면 유동의 수치 시뮬레이션)

  • 강신영
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 1990
  • For the tracking of three dimensional free surface motions, a method referred to as the Volume of Fluid(VOF) algorithm is extended. In order to calculate the slope of three dimensional free surface which is the most important for the advection algorithm that decides the amount of fluid from cell to cell and for the application of free surface boundary condition, a simple method utilizing two dimensional slope informations is introduced. The extended algroithm is tested by demonstrating the simulation of a propagating sinusoidal wave through the channel whose width changes abruptly.

  • PDF