• Title/Summary/Keyword: 3D Finite Element Method

Search Result 1,364, Processing Time 0.032 seconds

Optimal Design of Permanent Magnet Thrust Bearings (영구자석형 스러스트 베어링의 최적 설계)

  • Yoo, Seong-Yeol;Kim, Woo-Yeon;Kim, Seung-Jong;Lee, Wook-Ryun;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we describe a process for optimally designing a ring-type permanent magnet thrust bearing. The bearing consists of two sets of permanent magnet rings. One set is located inside the other set. An axial offset between the two sets creates axial force, which results in a thrust bearing function. In order to realize an optimal design of the bearing where the required load capacity of the bearing is achieved with the least magnet volume, we derived analytical design equations by adopting the equivalent current sheet (ECS) method. We considered the following two types of magnet arrays: axial arrays and Halbach arrays. These two types of arrays are optimized using the analytical design equations. The results of the optimization are verified using three dimensional (3D) finite element analyses (FEA). The results show that the Halbach array can achieve the required load capacity with less amount of permanent magnet than the axial array does. The efficacy of the ECS method is also verified by using 3D FEA. It is found that the accuracy of ECS method is more sensitive to the underlying assumptions for the Halbach array than for the axial array.

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Study on the stress distribution depending on the bone type and implant abutment connection by finite element analysis (지대주 연결 형태와 골질에 따른 저작압이 임프란트 주위골내 응력분포에 미치는 영향)

  • Park, Hyun-Soo;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.531-554
    • /
    • 2006
  • Oral implants must fulfill certain criteria arising from special demands of function, which include biocompatibility, adequate mechanical strength, optimum soft and hard tissue integration, and transmission of functional forces to bone within physiological limits. And one of the critical elements influencing the long-term uncompromise functioning of oral implants is load distribution at the implant- bone interface, Factors that affect the load transfer at the bone-implant interface include the type of loading, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface. To understand the biomechanical behavior of dental implants, validation of stress and strain measurements is required. The finite element analysis (FEA) has been applied to the dental implant field to predict stress distribution patterns in the implant-bone interface by comparison of various implant designs. This method offers the advantage of solving complex structural problems by dividing them into smaller and simpler interrelated sections by using mathematical techniques. The purpose of this study was to evaluate the stresses induced around the implants in bone using FEA, A 3D FEA computer software (SOLIDWORKS 2004, DASSO SYSTEM, France) was used for the analysis of clinical simulations. Two types (external and internal) of implants of 4.1 mm diameter, 12.0 mm length were buried in 4 types of bone modeled. Vertical and oblique forces of lOON were applied on the center of the abutment, and the values of von Mises equivalent stress at the implant-bone interface were computed. The results showed that von Mises stresses at the marginal. bone were higher under oblique load than under vertical load, and the stresses were higher at the lingual marginal bone than at the buccal marginal bone under oblique load. Under vertical and oblique load, the stress in type I, II, III bone was found to be the highest at the marginal bone and the lowest at the bone around apical portions of implant. Higher stresses occurred at the top of the crestal region and lower stresses occurred near the tip of the implant with greater thickness of the cortical shell while high stresses surrounded the fixture apex for type N. The stresses in the crestal region were higher in Model 2 than in Model 1, the stresses near the tip of the implant were higher in Model 1 than Model 2, and Model 2 showed more effective stress distribution than Model.

Quantitative Analysis of 3-D Displacements Measurement by Using Holospeckle Interferometry (홀로스펙클 간섭법을 이용한 3차원 변위측정의 정량적 연구)

  • 주진원;권영하;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1208-1217
    • /
    • 1993
  • The simple and effective optical technique synthesizing holographic interferometry and speckle photography is presented. The optical system used in this experiment is based on image holography. A cantilever beam located on the precision translator is used to evaluate this measurement system. Experimental results agree well with the actual displacements within the error of 2.8%. As an its application, three dimensional contact deformation in the ball indentation is measured by using this optical system and compared with the numerical analysis by finite element method.

Analysis of Mat Foundation by Considering Interface with Rock Mass (전면기초-하부암반 접촉면의 영향분석)

  • Lee, Jae-Hwan;Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.39-47
    • /
    • 2010
  • In recent days, the foundations of huge structures in general and mega foundations of grand bridges and high-rise buildings in particular are required in geotechnical engineering. This study described 3 dimensional behavior of mat foundation on soft rock based on a numerical study using 3D finite element method. A series of numerical analyses were performed for various soil conditions and mat rigidities under vertical loading. Based on the results of the parametric study, it is shown that the prediction of the settlement, cross sectional tensile stress and bending moments in the mat is overestimated in the analysis without considering interface behavior in comparison with the analysis considering interface between mat and rock mass.

Effects of Inclination of Enclosure and Partition on Natural Convective Heat Transfer in a Partitioned Enclosure (격판을 가진 밀폐공간내의 자연대류 열전달에 공간 및 격판의 경사가 미치는 영향)

  • Chung, I.K.;Song, D.J.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.302-314
    • /
    • 1994
  • The effects of the inclination of enclosure and partition on natural convective flow and heat transfer were investigated numerically. The enclosure was composed of the lower hot and the upper cold horizontal walls and the adiabatic vertical walls, and a partition was positioned perpendicularly at the mid-height of one vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations were performed with the variations of the partition length and Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height with water(Pr=4.95). The effects of the inclination angle of enclosure and partition on the heat transfer within an enclosure were also studied. As the results, the increase of the inclination angle of enclosure rapidly raised the heat transfer rate, while the inclination angle for the maximum Nusselt number was retarded with the increase of the partition length and the decrease of the heat transfer rate became larger in proportion to the increase of the partition length. The Nusselt number obtained by the inclination of partition was smaller than that of the inclination of enclosure. However, the difference of the heat transfer rates was considerably decreased at the longer partition lengths and the trends for the variation of the average Nusselt number were more similar with that of the inclination of enclosure. The upward oriented partition increases the convective heat transfer distinctly in contrast to that of the inclination of enclosure as the partition length increases.

  • PDF

Three-Dimensional Grillage Analysis of Reaction Forces on Supports of Pre-Erection Block (격자구조모델을 이용한 선체 PE블록의 반목 반력 해석 시스템 개발)

  • Ryu, Cheolho;Kim, Sungchan;Kim, Dong Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • Many PE (pre-erection) blocks are supported by wooden, concrete, or steel supports when they are stocked in the outdoor areas of a shipyard. Their positions and numbers are planned on the basis of the workers' experience. Recently, many shipyards have been making PE blocks with various shapes and weight distributions because of the variety of ships and building technologies. Therefore, it is now necessary to deal with blocks that they have no experience with. We propose a method to conveniently and quickly evaluate the structural safety of PE block supports, without the need for special knowledge and technology related to structural analysis. This method can reduce the large number of man hours (MH) normally needed for the analysis. The three-dimensional grillage analysis is performed for a simplified grillage model of a PE block. For efficiency, the grillage model of the PE block is automatically built from its three-dimensional CAD model, and its weight is also automatically distributed on the grillage model. The integrated system has been comprehensively implemented to perform the grillage analysis for the reaction forces on block supports. This paper describes how to make a grillage model of a PE block and estimate the weight distribution of the block on this grillage model. These steps are verified by comparing the supports reaction forces to those of the 3D finite element analysis for the PE blocks that are provided by a shipyard.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.