• 제목/요약/키워드: 3D Finite Element Analysis

검색결과 1,960건 처리시간 0.032초

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis

  • Cao, Zongjie;Liu, Yongyu
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.321-336
    • /
    • 2012
  • As an improvement on the isoparametric element method, the derivation presented in this paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D crack problems in this paper. A new displacement modelling is constructed with local solutions of three-dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics analysis is presented. The stress intensity factors can be solved directly by means of the present method without any post-processing. A new method for calculating the stress intensity factors of three-dimensional cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the validity of the present method. The accuracy of the results obtained by the proposed element is demonstrated by solving several crack problems. The results illustrate that this method not only saves much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can be easily implemented and incorporated into existing finite element codes.

Advances in Simulation of Arbitrary 3D Crack Growth using FRANC3Dv5

  • Wawrzynek, P.A.;Carter, B.J.;Hwang, Chang-Yu;Ingraffea, A.R.
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.607-613
    • /
    • 2010
  • FRANC3D is a program for simulating arbitrary three-dimensional crack growth. Recently, a completely new version of the program, FRANC3D/NG, has been created. Unlike previous versions, which relied largely on boundary element analysis, the new version of the program works with finite element analysis exclusively and is designed to work with general-purpose commercial finite element packages. This paper presents the theoretical underpinnings of the procedures to adaptively modify the geometry and mesh of a model to simulate crack growth.

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

대변형 유한요소해석을 위한 요소망 자동 생성기법 (Automatic Quadrilateral Mesh Generation for Large Deformation Finite Element Analysis)

  • 김동준;최호준;장동환;임중연;이호용;황병복
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.194-201
    • /
    • 2003
  • An automatic quadrilateral mesh generator for large deformation finite element analysis such as metal forming simulation was developed. The NURBS interpolation method is used for modeling arbitrary 2-D free surface. This mesh generation technique is the modified paving algorithm, which is an advancing front technique with element-by-element resolving method for paving boundary intersection problem. The mesh density for higher analysis accuracy and less analysis time can be easily controlled with high-density points, maximum and minimum element size. A couple of application to large deformation finite element analysis is given as an example, which shows versatility and applicability of the proposed approach and the developed mesh generator for large deformation finite element analysis.

강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석 (Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method)

  • 안동규;정동원;양동열;이장희
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

3D 프린트를 통해 제작된 손목 보조기의 유한요소해석 (Finite Element Analysis of Wrist Orthosis with 3D Printing)

  • 최현우;강인영;노건우;서안나;이종민
    • 한국방사선학회논문지
    • /
    • 제13권7호
    • /
    • pp.947-953
    • /
    • 2019
  • 임상에서 사용하는 진단 검사 장치인 전산화 단층촬영기와 자동화된 설계 소프트웨어(MediACE 3D Prog ram), 3D 프린터로 손목 보조기를 제작하고자 하였다. 전산화단층촬영기로 상지의 Dicom 파일을 획득한 후 MediACE 3D Program을 통해 손목 보조기를 디자인하여 "STL(stereolithography)"파일을 만들었고, 디자인된 손목 보조기는 3D 프린터를 이용하여 인쇄하였다. 3D 프린팅 기술로 제작된 손목보조기의 효용성 검증을 위해 뼈와 피부에 가해지는 압력 및 보조기의 스트레스 분포를 유한요소해석으로 나타내었다. 손목 보조기를 제작할 때 유한요소해석의 결과를 가지고 뼈와 피부가 압력에 의한 손상과 보조기의 파손이 자주 일어나는 부위를 보강하여 손목 보조기를 제작할 수 있을 것이라고 기대된다.

베르코비치 나노인덴테이션에 대한 3차원 유한요소해석과 탄소성 변형에 관한 연구 (A Study on Elastic-Plastic Deformation and 3-D FEA for the Berkovich Nano-Indentation)

  • 양현윤;김지수;윤존도;조상봉
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.167-173
    • /
    • 2005
  • The Berkovich nano-indentation is an indentation test method analyzing mechanical properties of materials such as hardness and elastic modulus. The length scale of the penetration is measured in nanometers. Therefore, this method becomes widely useful for analyzing the mechanical property of thin film which can not be measured before. In this paper, comparing two results of the load-displacement curve obtained by the Berkovich nano-indentation and the 3-D finite element analysis, it was confirmed that the 3-D finite element analysis is useful. The phenomenon of pile-up and sink-in due to material properties was discussed by the finite element analysis.

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.