• Title/Summary/Keyword: 3D Digital Modeling

Search Result 358, Processing Time 0.025 seconds

Application of Digital Photogrammetry to Dinosaur Tracks from the Namhae Gain-ri Tracksite (남해 가인리 공룡발자국 화석에 대한 디지털 사진 측량 기법의 활용)

  • Kong, Dal-Yong;Lim, Jong-Deock;Kim, Jeong-Yul;Kim, Kyung Soo
    • Journal of the Korean earth science society
    • /
    • v.31 no.2
    • /
    • pp.129-138
    • /
    • 2010
  • A number of dinosaur tracksites located at southern coast of the Korean Peninsula have continuously been damaged by sea-waves and weathering. To protect the dinosaur tracksites from the damage permanently and safely, we need to develop conservation programs as well as to collect data documenting the sites. We specifically applied digital photogrammetry to extensively record and document dinosaur tracks in the Namhae Gain-ri tracksite (Natural Monument No. 499) and were able to obtain 3D images data with it. The data of 3D images enable us to produce permanent documentation and preservation of the morphology of dinosaur tracks and tracksites. Moreover the weathering rate on time can be numerically analyzed by periodic measurements of the dinosaur tracksite and comparison of those measurements. The 3D modeling techniques also can be used in various ways including analyzing morphology of tracks, duplicating replicas for museum exhibitions, and posting the results on the Internet homepage.

Stereoscopic 3D Modelling Approach with KOMPSAT-2 Satellite Data

  • Tserennadmid, T.;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.205-214
    • /
    • 2009
  • This paper investigates stereo 3D viewing for linear pushbroom satellite images using the Orbit-Attitude Model proposed by Kim (2006) and using OpenGL graphic library in Digital Photogrammetry Workstation. 3D viewing is tested with KOMPSAT-2 satellite stereo images, a large number of GCPs (Ground control points) collected by GPS surveying and orbit-attitude sensor model as a rigorous sensor model. Comparison is carried out by two accuracy measurements: the accuracy of orbit-attitude modeling with bundle adjustment and accuracy analysis of errors in x and y parallaxes. This research result will help to understand the nature of 3D objects for high resolution satellite images, and we will be able to measure accurate 3D object space coordinates in virtual or real 3D environment.

Evaluation of mechanical properties of polylactic acid and photopolymer resin processed by 3D printer fused deposition modeling and digital light processing at cryogenic temperature

  • Richard G. Pascua;Gellieca Dullas;SangHeon Lee;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.19-23
    • /
    • 2024
  • 3D printing has the advantage of being able to process various types of parts by layering materials. In addition to these advantages, 3D printing technology allows models to be processed quickly without any special work that can be used in different fields to produce workpieces for various purposes and shapes. This paper deals to not only increase the utilization of 3D printing technology, but also to revitalize 3D printing technology in applications that require similar cryogenic environments. The goal of this study is to identify the mechanical properties of polylactic acid and photopolymer resin processed by Fused Deposition Modeling (FDM) and Digital Light Processing (DLP) respectively. The entire process is meticulously examined, starting from getting the thermal contraction using an extensometer. A uniaxial tensile test is employed, which enables to obtain the mechanical properties of the samples at both room temperature (RT) and cryogenic temperature of 77 K. As the results, photopolymer resin exhibited higher tensile properties than polylactic acid at RT. However, at cryogenic temperatures (77 K), the photopolymer resin became brittle and failure occurred due to thermal contraction, while polylactic acid demonstrated superior tensile properties. Therefore, polylactic acid is more suitable for lower temperatures.

A study of parametric design methodology for 3D modeling parameters of biomorphic clothing sculpture (파라메트릭 디자인 방법론을 적용한 바이오모픽 의상조각 모델링 프로세스와 구성요소 분석)

  • Yoo, Young-Sun;Cho, Min-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.2
    • /
    • pp.109-122
    • /
    • 2019
  • The purpose of this study is to examine the clothing component information and attributes as the control parameters for the 3D modeling process of the biomorphic clothing sculpture using a parametric methodology. The 3D modeling parameters of biomorphic clothing sculpture were identified as exaggerated silhouette, surface texture, and digital color. The types of exaggerated silhouettes were shoulder and hip exaggeration, shoulder exaggeration, hip exaggeration, vertical exaggeration, and horizontal exaggeration. The types of surface texture were embossed, lacy, furry, and complex textures. The types of digital color were chrome, blur, blend, and acid colors. The characteristics of morphological representation due to the attributes of these control variables were identified as morphological variation, organic morphology, organizational morphology, and realistic morphology. As a result, it was found that the parameter attributes were applied to the biomorphic clothing sculpture parametric design process and developed into various shapes.

A Plan to Maximizing the Visual Immersion of 3D Media Art (3D 미디어아트의 시각적 몰입감 극대화 방안)

  • Kim, Ki-Bum;Kim, Kyoung-Soo
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.659-669
    • /
    • 2015
  • Recently, media art is transforming from analogue to 'digital', and from 2D to '3D'. In particular, the range of utilizing 3D Media Art is getting wider through merging with other genres of contents in the digital environments, such as Media façade, Hologram, Virtual reality, App application, and etc. Therefore, by referring to the 3D award-winning works of Pirx Ars Electronica, which are regarded as the most outstanding works of media art of today, factors that affect sensation of visual immersion have been analyzed, through which strategies for maximizing viewers' interests in media arts and heightening their emotions while viewing have been determined. Based on the findings of the study, it has been shown that such works of media arts that involve development of concepts with 'creativity' and 'variability' from the perspective of visual concept, such as 3D modeling and mapping, with 'consistency' through out all concepts, as well as the works with stronger 'restriction' of concept within its animation and postproduction, attracted more interests from the viewer. From the point of view with visual four steps in composition, positioning the change in quality of 3D 'shape' and 'material' following the four-step rule, and gradual increase of change in quantity within the 'number' and 'size', in addition to increased degree of systematization within the change in editing, such as the 'scene change', resulted in more heightened emotions from the viewer. Thus, in order to maximize sensation of visual immersion, strategies for 'developing 3D visual concepts' while 'synchronizing' them, as well as 'strengthening the four steps within 3D visual composition' while 'systematizing' them should be emphasized.

1D FN-MLCA and 3D Chaotic Cat Map Based Color Image Encryption (1차원 FN-MLCA와 3차원 카오틱 캣 맵 기반의 컬러 이미지 암호화)

  • Choi, Un Sook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.406-415
    • /
    • 2021
  • The worldwide spread of the Internet and the digital information revolution have resulted in a rapid increase in the use and transmission of multimedia information due to the rapid development of communication technologies. It is important to protect images in order to prevent problems such as piracy and illegal distribution. To solve this problem, I propose a new digital color image encryption algorithm in this paper. I design a new pseudo-random number generator based on 1D five-neighborhood maximum length cellular automata (FN-MLCA) to change the pixel values of the plain image into unpredictable values. And then I use a 3D chaotic cat map to effectively shuffle the positions of the image pixel. In this paper, I propose a method to construct a new MLCA by modeling 1D FN-MLCA. This result is an extension of 1D 3-neighborhood CA and shows that more 1D MLCAs can be synthesized. The safety of the proposed algorithm is verified through various statistical analyses.

Accuracy Assessment of 3D Geopositioning of KOMPSAT-2 Images Using Orbit-Attitude Model (KOMPSAT-2 영상의 정밀궤도기반모델을 이용한 3차원 위치결정 정확도 평가)

  • Lee, Sang-Jin;Kim, Jung-Uk;Choi, Yun-Soo;Jung, Seung-Kyoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.3-10
    • /
    • 2010
  • In this study, the orbit-based sensor modeling is applied to the digital plotting and the accuracy of digital plotting is analyzed. The KOMPSAT-2 satellite image with orbit-attitude model is used for the analysis. The precise sensor modeling with various combination of parameters is performed for the stereo satellite image. In addition, we analyze the error range of ground control points by applying the result of stereo modeling to digital survey system. According to the result, it is possible to produce digital map using stereo image with a small number of GCPs when the orbit-based sensor modeling for KOMPSAT-2 is applied. This means that it is suitable for the generation of digital map on a scale of 1/5,000 to 1/25,000 considering the resolution of KOMPSAT-2 image.

3D City Modeling Using Laser Scan Data

  • Kim, Dong-Suk;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.505-507
    • /
    • 2003
  • This paper describes techniques for the automated creation of geometric 3D models of the urban area us ing two 2D laser scanners and aerial images. One of the laser scanners scans an environment horizontally and the other scans vertically. Horizontal scanner is used for position estimation and vertical scanner is used for building 3D model. Aerial image is used for registration with scan data. Those models can be used for virtual reality, tele-presence, digital cinematography, and urban planning applications. Results are shown with 3D point cloud in urban area.

  • PDF

Building Information Modeling of Caves (CaveBIM) in Jeju Island at a Specific Site below a Road at Jaeamcheon Lava Tube and at a Broader Scale for Hallim Town (제주도 한림 재암천굴과 도로 교차구간의 CaveBIM 구축)

  • An, Joon-Sang;Kim, Wooram;Baek, Yong;Kim, Jin-Hwan;Lee, Jong-Hyun
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.449-466
    • /
    • 2022
  • The establishment of a complete geological model that includes information about all the various components at a site (such as underground structures and the compositions of rock and soil underground space) is difficult, and geological modeling is a developing field. This study uses commercial software for the relatively easy composition of geological models. Our digital modeling process integrates a model of Jeju Island's 3D geological information, models of cave shapes, and information on the state of a road at the site's upper surface. Among the numerous natural caves that exist in Jeju Island, we studied the Jaeamcheon lava tube near Hallim town, and the selected site lies below a road. We developed a digital model by applying the principles of building information modeling (BIM) to the cave (CaveBIM). The digital model was compiled through gathering and integrating specific data: relevant processes include modeling the cave's shape using a laser scanner, 3D geological modeling using geological information and geophysical exploration data, and modeling the surrounding area using drones. This study developed a global-scale model of the Hallim region and a local-scale model of the Jaeamcheon cave. Cross-validation was performed when constructing the LSM, and the results were compared and analyzed.

A Study on Establishment of 3D Digital Restoration of Cheongju Townscape in the 1960s - Focused on the Simplified Modeling of Nammun-ro 2ga dong - (1960년대 청주 도심경관의 3차원 디지털 복원모델 구축에 관한 연구 - 남문로 2가동의 간략화 모델작성을 중심으로 -)

  • Kim, Tai-Young;Cho, Sang-Min;Son, In-Bin
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.31-40
    • /
    • 2019
  • This study aims to establish Nammun-ro 2ga in Cheongju city in the 1960s as three-dimensional digital information data for the restoration of urban archetypes. For this purpose, referring to the existing restoration map and model of Cheongju urban area in the 1960s, and the results of this study are as follows. Firstly, the buildings that can be generally classified are prepared through the modeling of parametric families. Secondly, the untypical models(combined and broken roofs, atypical and large scale buildings) of them are simply performed through solid modeling. And then, these simplified models are simulated through a sky view, a walking sight, and information analysis. Through this study, it will be possible to visualize and regenerate the low and dense area of Cheongju city in the 1960s.