• Title/Summary/Keyword: 3D Depth Estimation

Search Result 197, Processing Time 0.023 seconds

2.5D human pose estimation for shadow puppet animation

  • Liu, Shiguang;Hua, Guoguang;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2042-2059
    • /
    • 2019
  • Digital shadow puppet has traditionally relied on expensive motion capture equipments and complex design. In this paper, a low-cost driven technique is presented, that captures human pose estimation data with simple camera from real scenarios, and use them to drive virtual Chinese shadow play in a 2.5D scene. We propose a special method for extracting human pose data for driving virtual Chinese shadow play, which is called 2.5D human pose estimation. Firstly, we use the 3D human pose estimation method to obtain the initial data. In the process of the following transformation, we treat the depth feature as an implicit feature, and map body joints to the range of constraints. We call the obtain pose data as 2.5D pose data. However, the 2.5D pose data can not better control the shadow puppet directly, due to the difference in motion pattern and composition structure between real pose and shadow puppet. To this end, the 2.5D pose data transformation is carried out in the implicit pose mapping space based on self-network and the final 2.5D pose expression data is produced for animating shadow puppets. Experimental results have demonstrated the effectiveness of our new method.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

3D Environment Perception using Stereo Infrared Light Sources and a Camera (스테레오 적외선 조명 및 단일카메라를 이용한 3차원 환경인지)

  • Lee, Soo-Yong;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • This paper describes a new sensor system for 3D environment perception using stereo structured infrared light sources and a camera. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and two projected infrared light sources are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Two successive captures of the image with left and right infrared light projection provide several benefits, which include wider area of depth measurement, higher spatial resolution and the visibility perception.

A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information (얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.21-28
    • /
    • 2011
  • A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.

High Accuracy Skeleton Estimation using 3D Volumetric Model based on RGB-D

  • Kim, Kyung-Jin;Park, Byung-Seo;Kang, Ji-Won;Kim, Jin-Kyum;Kim, Woo-Suk;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1095-1106
    • /
    • 2020
  • In this paper, we propose an algorithm that extracts a high-precision 3D skeleton using a model generated using a distributed RGB-D camera. When information about a 3D model is extracted through a distributed RGB-D camera, if the information of the 3D model is used, a skeleton with higher precision can be obtained. In this paper, in order to improve the precision of the 2D skeleton, we find the conditions to obtain the 2D skeleton well using the PCA. Through this, high-quality 2D skeletons are obtained, and high-precision 3D skeletons are extracted by combining the information of the 2D skeletons. Even though this process goes through, the generated skeleton may have errors, so we propose an algorithm that removes these errors by using the information of the 3D model. We were able to extract very high accuracy skeletons using the proposed method.

Three-Dimensional Visualization Technique of Occluded Objects Using Integral Imaging with Plenoptic Camera

  • Lee, Min-Chul;Inoue, Kotaro;Tashiro, Masaharu;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • In this study, we propose a three-dimensional (3D) visualization technique of occluded objects using integral imaging with a plenoptic camera. In previous studies, depth map estimation from elemental images was used to remove occlusion. However, the resolution of these depth maps is low. Thus, the occlusion removal accuracy is not efficient. Therefore, we use a plenoptic camera to obtain a high-resolution depth map. Hence, individual depth map for each elemental image can also be generated. Finally, we can regenerate a more accurate depth map for 3D objects with these separate depth maps, allowing us to remove the occlusion layers more efficiently. We perform optical experiments to prove our proposed technique. Moreover, we use MSE and PSNR as a performance metric to evaluate the quality of the reconstructed image. In conclusion, we enhance the visual quality of the reconstructed image after removing the occlusion layers using the plenoptic camera.

Rapid Implementation of 3D Facial Reconstruction from a Single Image on an Android Mobile Device

  • Truong, Phuc Huu;Park, Chang-Woo;Lee, Minsik;Choi, Sang-Il;Ji, Sang-Hoon;Jeong, Gu-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1690-1710
    • /
    • 2014
  • In this paper, we propose the rapid implementation of a 3-dimensional (3D) facial reconstruction from a single frontal face image and introduce a design for its application on a mobile device. The proposed system can effectively reconstruct human faces in 3D using an approach robust to lighting conditions, and a fast method based on a Canonical Correlation Analysis (CCA) algorithm to estimate the depth. The reconstruction system is built by first creating 3D facial mapping from a personal identity vector of a face image. This mapping is then applied to real-world images captured with a built-in camera on a mobile device to form the corresponding 3D depth information. Finally, the facial texture from the face image is extracted and added to the reconstruction results. Experiments with an Android phone show that the implementation of this system as an Android application performs well. The advantage of the proposed method is an easy 3D reconstruction of almost all facial images captured in the real world with a fast computation. This has been clearly demonstrated in the Android application, which requires only a short time to reconstruct the 3D depth map.

Object-based Conversion of 2D Image to 3D (객체 기반 3D 업체 영상 변환 기법)

  • Lee, Wang-Ro;Kang, Keun-Ho;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.555-563
    • /
    • 2011
  • In this paper, we propose an object based 2D image to 3D conversion algorithm by using motion estimation, color labeling and non-local mean filtering methods. In the proposed algorithm, we first extract the motion vector of each object by estimating the motion between frames and then segment a given image frame with color labeling method. Then, combining the results of motion estimation and color labeling, we extract object regions and assign an exact depth value to each object to generate the right image. While generating the right image, occlusion regions occur but they are effectively recovered by using non-local mean filter. Through the experimental results, it is shown that the proposed algorithm performs much better than conventional conversion scheme by removing the eye fatigue effectively.

Estimation of Stress Intensity Factors for 3-Dimensional Surface Defects under Axial Tensile Loads Using the Finite Element Method

  • Jeon, Byung-Young;Kumar, Y.V. Satish;Kang, Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.267-272
    • /
    • 2002
  • Pitting corrosion is a very common occurrence in marine structures. Therefore, the 3-D finite element analysis is carried out to determine the stress intensity factors at the pit depth and also at the surface of the pit. The pits are modeled as a part of sphere, based on the pit depth and the pit diameter as specified by the Ship Structural Committee. The pit depth and pit diameter are function of the percentage of pitting that the plate is subjected to. A dog-bone shaped specimen is subjected to different intensities of pitting and the stress intensity factors are determined under axial tensile loads.

  • PDF

Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects (체적형 객체 촬영을 위한 RGB-D 카메라 기반의 포인트 클라우드 정합 알고리즘)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.765-774
    • /
    • 2019
  • In this paper, we propose a point cloud matching algorithm for multiple RGB-D cameras. In general, computer vision is concerned with the problem of precisely estimating camera position. Existing 3D model generation methods require a large number of cameras or expensive 3D cameras. In addition, the conventional method of obtaining the camera external parameters through the two-dimensional image has a large estimation error. In this paper, we propose a method to obtain coordinate transformation parameters with an error within a valid range by using depth image and function optimization method to generate omni-directional three-dimensional model using 8 low-cost RGB-D cameras.