• 제목/요약/키워드: 3D Deformation

검색결과 1,188건 처리시간 0.033초

탄소강 선재 압연공정의 DCI 롤 마멸 예측 기술의 개발 (Development of Technique Predicting of the Wear of DCI Roll Using Carbon Steel in Hot Rod Rolling Process)

  • 김동환;김병민;이영석;유선준;주웅용
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1736-1745
    • /
    • 2002
  • The objective of this study is to predict the roll wear in hot rod rolling process. In this study hot rod rolling process for round and oval passes has been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the thermal softening of DCI (Ductile Cast Iron) roll according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering parameter curve. 3D wear program developed in this study might be used for adjusting the gap of rolls to set up a suitable rolling schedule for keeping dimensional tolerance of the product.

주철의 표면로울링에서 가압력의 영향 (Relation between applied forces and surface characteristics on surface rolling in cast iron)

  • 육굉수;박병성;최재승
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.705-711
    • /
    • 1988
  • 본 연구에서는 대구중공업(주)의 대형선반 베드면 재질과 동일한 회수철(KS D4301 GC30)시편을 선삭가공하고 볼베어링의 레이스를 이용한 구조로 설계된 볼형 표 면로울링기구를 사용하여 로울러 다듬질을 행함으로서 전가공에 따른 가압력이 표면조 도에 미치는 영향을 구명하는데 목적을 두었으며 아울러 로울링 회수에 따른 표면조도, 경도 및 직경의 변화량을 실험적으로 구명하였다.

PSC 박스 거더 철도교량의 해석 및 스트럿-타이 모델에 의한 격벽부 설계 (Analysis of PSC Box Girder Railway Bridge and Design of its Diaphragm using Sturt-and-Tie Model)

  • 송하원;김형운;김영훈;변근주
    • 한국철도학회논문집
    • /
    • 제1권1호
    • /
    • pp.30-39
    • /
    • 1998
  • The functions of diaphragms at abutments and piers of PSC box girder railway bridge are to transfer forces from the superstructure onto bearings or columns and to stiffen the superstructure cross-section against in -plane deformation. Due to stress disturbance at diaphragm, the design for the diaphragm using conventional design method is relatively irrational than those for other structural members. And, due to contribution to boundary condition of deck slab by the diaphragm, the behavior of deck slab near the diaphragm is different from that of the deck slab obtained from two dimensional analysis of the bridge, which is basis for the design of deck slab. In this paper, three dimensional behavior of deck slab near the diaphragm of prestressed concrete (PSC) box girder railway bridge constructed by the precast span method are analyzed by using three dimensional finite element modeling and using the strut-and-tie model design of the diaphragm are presented. The modeling techniques used in this paper can be applied effectively to examine the causes of cracks at deck slab near diaphragm and to design diaphragm rationally.

  • PDF

판재의 이방성을 고려한 연성파단모델 개발 (Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy)

  • 박남수;허훈
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

AA 5J32 Tailor Rolled Blank를 이용한 차량용 Door Inner Panel 개발 (Development of Automotive Door Inner Panel using AA 5J32 Tailor Rolled Blank)

  • 전성진;이문용;김병민
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.512-517
    • /
    • 2011
  • TRB(Tailor Rolled Blank) is an emerging manufacturing technology by which engineers are able to change blank thickness continuously within a sheet metal. TRB door inner panels with required larger thicknesses can be used to support localized high loads. In this study, the aluminum alloy 5J32 TRB sheet is used for a door inner panel application. The TRB material properties were varied by using three heat treatment conditions. In order to predict the failure of the aluminum TRB during simulation, the forming limit diagram, which is used in sheet metal forming analysis to determine the criterion for failure, was investigated. Full-field photogrammetric measurement of the TRB deformation was performed with an ARAMIS 3D system. A FE model of the door inner panel was created using Autoform software. The material properties obtained from the tensile tests were used in the numerical model to simulate the door inner of AA 5J32 for each heat treatment condition. After finite element analysis for the evaluation of formability, a prototype front door panel was manufactured using a hydraulic press.

대변형 해석에서 평활화를 이용한 사면체 요소망의 재조성

  • 권기환;채수원;신상엽
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2397-2405
    • /
    • 2000
  • The remeshing is a method to replace a distorted mesh by a new mesh without interrupting the finite element calculation. The remeshing procedure in this paper refers to the rezoning, for which a sm oothing process is developed to alleviate the distortions of mesh. In the paper, an automatic finite element rezoning system with tetrahedral elements for large deformation analysis has been developed. Our smoothing process is composed of two steps, a surface smoothing and a volume smoothing. In the surface smoothing, checking the dihedral angle and projection on surface patch reduced the change of shape and nodes penetrating die. The constrained Laplacian smoothing has been employed for the volume smoothing process. The state variables are mapped from old mesh to new mesh by using volume coordinates within a tetrahedral element. All these procedures have been linked to the NIKE3D program As illustrated in the examples the overall strategy ensures a robust and efficient rezoning scheme for finite element simulation of metal-forming processes.

Composite action of hollow concrete-filled circular steel tubular stub columns

  • Fu, Qiang;Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fang, Chang-jing
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.693-703
    • /
    • 2018
  • To better understand the influence of hollow ratio on the hollow concrete-filled circular steel tubular (H-CFT) stub columns under axial compression and to propose the design formula of ultimate bearing capacity for H-CFT stub columns, 3D finite element analysis and laboratory experiments were completed to obtain the load-deformation curves and the failure modes of H-CFT stub columns. The changes of the confinement effect between core concrete and steel tube with different hollow ratios were discussed based on the finite element results. The result shows that the axial stress of concrete and hoop stress of steel tube in H-CFT stub columns are decreased with the increase of hollow ratio. AfteGr the yield of steel, the reduction rate of longitudinal stress and the increase rate of circumferential stress for the steel tube slowed down. The confinement effect from steel tube on concrete also weakened slowly with the increase of hollow ratio. Based on the limit equilibrium method, a simplified formula of ultimate bearing capacity for the axially loaded H-CFT stub columns was proposed. The predicted results showed satisfactory agreement with the experimental and numerical results.

세장비가 큰 사각컵 디프 드로잉의 유한요소 해석 (Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio)

  • 구태완;하병국;송우진;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

스테레오 영상을 이용한 비행 중인 항공기 날개의 변위 및 진동 측정 (Measurement of Aircraft Wing Deformation and Vibration Using Stereo Pattern Recognition Method)

  • 김호영;윤종민;한재흥;권혁준
    • 한국소음진동공학회논문집
    • /
    • 제25권8호
    • /
    • pp.568-574
    • /
    • 2015
  • The present study was conducted by using stereo pattern recognition method(SPR method) to measure the displacement and vibration of an airplane wing in flight condition. A SPR based measurement system was developed using two visible light stereo cameras. The visible light stereo images were processed to obtain marker points by adaptive threshold method and marker filtering technique. The marker points were used to reconstruct 3D point, displacement, and vibration data. The SPR system was installed on F-16 fighter. The wing displacement and vibration were measured in flight condition. Therefore, this paper presents a possibility that SPR based measurement system using visible light stereo camera can be very useful for measuring displacement and vibration of an airplane in flight condition.

지반공학적 재해 및 산사태 위험도 분석에 관한 연구 (International Research on Geotechnical Risk & Landslide Hazards)

  • 윤길림;윤여원;김홍연
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.444-455
    • /
    • 2009
  • Great concerns on geotechnical risk & hazard assessment have been increased due to human and economic damage by natural disasters with recent global climate changes. In this paper, geotechnical problems in particular, landslides which is interested in European countries and North America, were mainly discussed. For these, 18 key topics on geotechnical risk and hazards which had been discussed at the LARAM 2008 workshop in Italy were analyzed after grouping by subjects. Main topic contents consisted of applications such as field measurement, early warning systems, uncertainty analysis of parameters using radar, optical data and statistical theory and so on. And the problems related to analysis of vulnerability and deformation due to earthquakes, investigation of gas zone using seismic reflection data in a landslide area, risk quantification and hazard assessment of landslide movements and multi-dimensional analysis for stability of complex slopes were attracted. Also, there were studies on risk matters of cultural heritage, the blockglide of clayey ground, simulations of debris flows based on GIS, quantification of the failure processes of rock slopes, a meshless method for 3D crack modelling, and finally risk assessment for cryological processes due to global warming.

  • PDF