• Title/Summary/Keyword: 3D Deformation

Search Result 1,187, Processing Time 0.029 seconds

FEM Analysis on Cavity Closure Behavior during Hot Open Die Forging Process (열간 자유단조시 내부 공극 압착 거동에 관한 유한요소해석)

  • Lee, Y.S.;Kwon, Y.C.;Kwon, Y.N.;Lee, S.W.;Kim, N.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.50-52
    • /
    • 2007
  • Large size forged parts usually were made by hot open die forging because of the die cost, high applied load and small manufacturing quantities. Cast ingots were used in open die forging and the ingots almost included the cavities in its inside. Therefore, one of the aims for forging processes is to close and remove the cavities. However, its criteria were well not defined since the studies have many difficulties to investigate the cavity behaviors because of its large size. In this study, the cavity closure behavior was investigated by experimental and FE analysis. The FEM analysis is performed to investigate the overlap defect of cast ingots during free forging stage. The measured flow stress data were used to simulate the forging process of cast ingot using the practical material properties. Also the analysis of cavity closure is performed by using the $DEFORM^{TM}$-3D. The calculated results of cavity closure behavior are compared with the measured results before and after forging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the cavity closure can be investigated by the comparison between practical experiment and numerical analysis.

  • PDF

Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator (자동차 방진 고무 부품의 유한요소해석 및 피로수명평가)

  • Kim, W.D.;Woo, C.S.;Han, S.W.
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.168-176
    • /
    • 1998
  • A strut rubber insulator is used in a suspension component of passenger cars. The uni-axial tension, compression, and the shear test were performed to acquire the constants of the strain energy functions which were Mooney-Rivlin model and Ogden model. The finite element analysis was executed to evaluate the behavior of deformation and stress distribution by using the commercial finite element code MARC ver K6.2. Also, the fatigue tests were carried out to obtain the fatigue life-load curve. The fatigue failure was initiated at the folded position of rubber, which was the same result predicted by the finite element analysis.

  • PDF

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.

Vibration Analysis of Transformer DC bias Caused by HVDC based on EMD Reconstruction

  • Liu, Xingmou;Yang, Yongming;Huang, Yichen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.781-789
    • /
    • 2018
  • This paper proposes a new approach utilizing empirical mode decomposition (EMD) reconstruction to process vibration signals of a transformer under DC bias caused by high voltage direction transmission (HVDC), which is the potential cause of additional vibration and noise from transformer. Firstly, the Calculation Method is presented and a 3D model of transformer is simulated to analyze transformer deformation characteristic and the result indicate the main vibration is produced along axial direction of three core limbs. Vibration test system has been built and test points on the core and shell of transformer have been measured. Then, the signal reconstruction method for transformer vibration based on EMD is proposed. Through the EMD decomposition, the corrupted noise can be selectively reconstructed by the certain frequency IMFs and better vibration signals of transformer have been obtained. After EMD reconstruction, the vibrations are compared between transformer in normal work and with DC bias. When DC bias occurs, odd harmonics, vibration of core and shell, behave as a nonlinear increase and the even harmonics keep unchanged with DC current. Experiment results are provided to collaborate our theoretical analysis and to illustrate the effectiveness of the proposed EMD method.

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.

Static behavior of steel tubular structures considering local joint flexibility

  • Wang, Yamin;Shao, Yongbo;Cao, Yifang
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.425-439
    • /
    • 2017
  • As a thin-walled structure, local joint flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the static performance for the overall structure. This study presents a simplified analytical model to analyze the static behavior for a steel tubular structure with LJF. The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at the connections between any two elements. Theoretical equations of the simplified analytical model are deduced. Through comparison with 3-D finite element results of two typical planar tubular structures consisted of T- and Y-joints respectively, the presented method is proved to be accurate. Furthermore, the effect of LJF on the overall performance of the two tubular structures (including the deflection and the internal forces) is also investigated, and it is found from analyses of internal forces and deformation that a rigid connection assumption in a frame model by using beam elements in finite element analysis can provide unsafe and inaccurate estimation.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

Determination of collapse safety of shear wall-frame structures

  • Cengiz, Emel Yukselis;Saygun, Ahmet Isin
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.135-148
    • /
    • 2007
  • A new finite shear wall element model and a method for calculation of 3D multi-storied only shear walled or shear walled - framed structures using finite shear wall elements assumed ideal elasto - plastic material are developed. The collapse load of the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The shape functions over the element are determined as a cubic variation along the story height and a linear variation in horizontal direction because of the rigid behavior of the floor slab. In case shear walls are chosen as only one element in every floor, correct solutions are obtained by using this developed element. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of shear wall elements when vertical deformation parameter is exceeded ${\varepsilon}_e$, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determination of collapse safety, plastic displacements and plastic deformations are taken as additional unknowns. Rows and columns are added to the system stiffness matrix for additional unknowns.

Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates (폴리카보네이트 판의 경사충격에 의한 도비 거동 수치연구)

  • Yang, Tae-Ho;Lee, Young-Shin;Jo, Jong-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the numerical simulation using AUTODYN-3D program was investigated angle trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the polycabonate plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The effect of the angle of inclination on the trajectory and kinetic energy of the projectile were studied. The dynamic deformation behaviors tests of polycabonate were compared with numerical simulation results which can be used as predictive purpose. From the simulation, the ricochet phenomenon was occurred for angles of inclination of $0^{\circ}{\leq}{\theta}{\leq}20^{\circ}$. The projectile perforated the plate for ${\theta}{\leq}30^{\circ}$, thus defining a failure envelope for numerical configuration. The numerical analyses are used to study the effect of the projectile impact velocity on the depth of penetration (DOP). It can be observed that the residual velocities were almost linear relative to penetration velocities. It means that polycarbonate has high resistance at higher velocities.

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.