• Title/Summary/Keyword: 3D BIM

Search Result 401, Processing Time 0.025 seconds

Collaborative Process to Facilitate BIM-based Clash Detection Tasks for Enhancing Constructability

  • Seo, Jung-Ho;Lee, Baek-Rae;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.299-314
    • /
    • 2012
  • One of reasons for introducing Building Information Modeling (BIM) is to support clash detection tasks by means of a 3D product model. In the conventional construction project process, clashes have been found during construction phase. However, it can cause cost overrun and time delay. In order to investigate and correct clash detections at design phase, relevant business process and guide for this task should be provided. This study aims to identify hindrances in clash detection tasks at the design phase and analyze its current process using IDEF0 model. Despite the convenience of IDEF0 as a systems analysis tool, professional participants might have difficulties to understand their own tasks according to business process. For this reason, in this research, Business Process Model and Notation (BPMN) is introduced to provide ideal process and required decision making governance. The provide BPMN model will provide insights for a BIM-based collaborative environment to enhance the constructability through the construction project.

PRELIMINARY STUDY REGARDING A DB CONSTRUCTION PLAN TO SUPPORT PERFORMANCE TECHNICAL A REMODELING ELEMENT TO BIM

  • Yong-Hyun Lee;Jong-soon Park;Jong-Sik Lee;Jae-Sauk Lee;Jae-Youl Chun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1300-1306
    • /
    • 2009
  • If a brief direction and plan for a remodeling project are decided, it may moves to a concrete design step of which to select the most suitable alternative out of applicable compounding devices to reveal dynamic drifting performance. However, the volume of knowledge baseed utility which can refer to systematic evaluation regarding remodeling element technology and the accumulation of realistic cases are not only sufficient, but also short including its system for expression and consistency. Therefore, it may necessary to deliver the main frame which make enables the Owner, designer and builder to get performance technology for applying advanced remodeling element and knowledge based utility. There is a necessity to provide an information with latest made by virtue of modeling in the 3D/4D based on construction-based knowledge etc. which we can use for life cycle of a project, as a prominent way of knowledge based utility. Then, it is sure that remodeling can become more activative by sharing of knowledge based utility formed in electronic 3D/4D which is a systematic and expressed consistently to a performance and applicability in preservation of savings. It is expected for modeling of the 3D/4D in knowledge based utility enables to verify the practicability of each technology on effective application, and the use of technology might be spread widely due its obvious and oriented expressions. Further, this knowledge based utility formed in electronic 3D/4D may applicable for VE process in addition to remodeling design fields.

  • PDF

Quality Inspection Scheme for Rebar Work Using 3D Scanning Technology (3D 스캐닝을 활용한 철근공사 품질점검 방안)

  • Kim, Ju-Yong;Park, Ji-Yeong;Lee, Don-Soo;Lee, Young-Do;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.214-215
    • /
    • 2020
  • The 3D scanning technology is being introduced for quality inspection of building construction. Therefore, this study tried to confirm whether it is possible to check the quality of rebar by using 3D scanning. After rebar placed on the formwork slab was scanned with a 3D scanner, the rebar spacing was confirmed by overlapping with the CAD drawing. As a result, the 3D scanner was able to check the quality of rebar work on one floor at a time. Therefore, 3D scanning could be used for quality inspection of rebar works such as columns, beam and girders, walls, and slabs in the future.

  • PDF

Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies (AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템)

  • Wentao Wang;Seung-Yong Lee;Sanghun Park;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.159-169
    • /
    • 2024
  • This paper proposes a new real-time fire monitoring and evacuation navigation system by integrating Augmented Reality (AR) technology with Internet of Things (IoT) technology. The proposed system collects temperature data through IoT temperature measurement devices installed in buildings and automatically transmits it to a MySQL cloud database via an IoT platform, enabling real-time and accurate data monitoring. Subsequently, the real-time IoT data is visualized on a 3D building model generated through Building Information Modeling (BIM), and the model is represented in the real world using AR technology, allowing intuitive identification of the fire origin. Furthermore, by utilizing Vuforia engine's Device Tracking and Area Targets features, the system tracks the user's real-time location and employs an enhanced A* algorithm to find the optimal evacuation route among multiple exits. The paper evaluates the proposed system's practicality and demonstrates its effectiveness in rapid and safe evacuation through user experiments based on various virtual fire scenarios.

A Study on Automated Quantity Take-off Methods of Earth Works in Road Design using 3D Design Concept (3차원 설계를 통한 도로설계단계의 토공 자동물량 산정 방안에 관한 연구)

  • Cho, Myunhwan;Kim, Nakseok;Chae, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.277-283
    • /
    • 2016
  • Recently, the interests in three-dimensional design and BIM(Building Information Modeling) are increasing in civil engineering sector and the researches about three-dimensional design and quantity take-off methods for civil engineering structures have been conducted. However, these studies are just carried out the 3D design and quantity calculation of civil structures on the road or railway such as bridges and tunnels. The study on the quantity take-off methods and the evaluation of calculated results on the earth works should be performed in more detail. Based on these backgrounds in mind, the study was conducted the three-dimensional road design and evaluated the quantity take-off results on the earth works using 3D calculation method(average end area method, prismoidal method and composit method). The calculated quantity from composit method showed about 5% error of measuring efficiency than the average end area method, and when reporting the quantity calculation of earth works, it is necessary to specify the calculation method using quantity take-off of earth works.

Evaluation of Geometric Error Sources for Terrestrial Laser Scanner

  • Lee, Ji Sang;Hong, Seung Hwan;Park, Il Suk;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • As 3D geospatial information is demanded, terrestrial laser scanners which can obtain 3D model of objects have been applied in various fields such as Building Information Modeling (BIM), structural analysis, and disaster management. To acquire precise data, performance evaluation of a terrestrial laser scanner must be conducted. While existing 3D surveying equipment like a total station has a standard method for performance evaluation, a terrestrial laser scanner evaluation technique for users is not established. This paper categorizes and analyzes error sources which generally occur in terrestrial laser scanning. In addition to the prior researches about categorizing error sources of terrestrial Laser scanning, this paper evaluates the error sources by the actual field tests for the smooth in-situ applications.The error factors in terrestrial laser scanning are categorized into interior error caused by mechanical errors in a terrestrial laser scanner and exterior errors affected by scanning geometry and target property. Each error sources were evaluated by simulation and actual experiments. The 3D coordinates of observed target can be distortedby the biases in distance and rotation measurement in scanning system. In particular, the exterior factors caused significant geometric errors in observed point cloud. The noise points can be generated by steep incidence angle, mixed-pixel and crosstalk. In using terrestrial laser scanner, elaborate scanning plan and proper post processing are required to obtain valid and accurate 3D spatial information.

Geometric and structural assessment and reverse engineering of a steel-framed building using 3D laser scanning

  • Arum Jang;Sanggi Jeong;Hunhee Cho;Donghwi Jung;Young K. Ju;Ji-sang Kim;Donghyuk Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.595-603
    • /
    • 2024
  • In the construction industry, there has been a surge in the implementation of high-tech equipment in recent years. Various technologies are being considered as potential solutions for future construction projects. Building information modeling (BIM), which utilizes advanced equipment, is a promising solution among these technologies. The need for safety inspection has also increased with the aging structures. Nevertheless, traditional safety inspection technology falls short of meeting this demand as it heavily relies on the subjective opinions of workers. This inadequacy highlights the need for advancements in existing maintenance technology. Research on building safety inspection using 3D laser scanners has notably increased. Laser scanners that use light detection and ranging (LiDAR) can quickly and accurately acquire producing information, which can be realized through reverse engineering by modeling point cloud data. This study introduces an innovative evaluation system for building safety using a 3D laser scanner. The system was used to assess the safety of an existing three-story building by implementing a reverse engineering technique. The 3D digital data are obtained from the scanner to detect defects and deflections in and outside the building and to create an as-built BIM. Subsequently, the as-built structural model of the building was generated using the reverse engineering approach and used for structural analysis. The acquired information, including deformations and dimensions, is compared with the expected values to evaluate the effectiveness of the proposed technique.

Evaluation of staircase accidents using 3D virtual simulation based on behavioral characteristics of the elderly (가상공간 시뮬레이션을 활용한 고령자 행동특성 기반 계단 낙상사고 평가)

  • Yang, Hyun-Cheul;Na, Sun-Cheol;Kim, Dong-Hyun;Lee, Jae-Wook
    • Journal of KIBIM
    • /
    • v.7 no.4
    • /
    • pp.21-30
    • /
    • 2017
  • Due to the rapidly aging population, the death rate of elderly people by safety accidents has been increasing. In particular, precautions are needed for falls prevention because they either directly or indirectly cause death. In the case of elderly people, most of the fall accidents occur in dense residential areas, and particularly, the staircase poses a risk of falling. Therefore, a safety assessment should be performed from the design phase. However, in general, staircases are designed using existing stair data or only aims to satisfy the installation criteria. Laws and regulations only define minimum requirements for safety, so it is not possible to prevent fall accidents even if they satisfy the requirements. Therefore, this study proposes a simulation-based method for evaluating the safety of staircases. The behavioral characteristics of the elderly are implemented to an virtual user in a virtual space including staircases, and fall accidents are evaluated by the evaluation logic related to the behavioral characteristics. The result shows that the safety of staircases can be preevaluated and reflected on the design to reduce the possibility of fall accidents of the elderly.

Considerations for Developing a SLAM System for Real-time Remote Scanning of Building Facilities (건축물 실시간 원격 스캔을 위한 SLAM 시스템 개발 시 고려사항)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In managing building facilities, spatial information is the basic data for decision making. However, the method of acquiring spatial information is not easy. In many cases, the site and drawings are often different due to changes in facilities and time after construction. In this case, the site data should be scanned to obtain spatial information. The scan data actually contains spatial information, which is a great help in making space related decisions. However, to obtain scan data, an expensive LiDAR (Light Detection and Ranging) device must be purchased, and special software for processing data obtained from the device must be available.Recently, SLAM (Simultaneous localization and mapping), an advanced map generation technology, has been spreading in the field of robotics. Using SLAM, 3D spatial information can be obtained quickly in real time without a separate matching process. This study develops and tests whether SLAM technology can be used to obtain spatial information for facility management. This draws considerations for developing a SLAM device for real-time remote scanning for facility management. However, this study focuses on the system development method that acquires spatial information necessary for facility management through SLAM technology. To this end, we develop a prototype, analyze the pros and cons, and then suggest considerations for developing a SLAM system.

A study on roughing planning by 2D criss sectional information generated from sculptured surfaces (자유곡면으로부터 단면정보를 이용한 황삭계획에 관한 연구)

  • 안대건;최홍태;이석희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.187-196
    • /
    • 1994
  • This study deals with roughing planning by cross sectional information generated from sculptured surfaces. Bicubic Bezier surface is adopted as sculptured surfaces in this paper. The system consists of 3 pstyd : 1) modeling sculptured surface, 2) reconstruction of cross-section in 2D coordinates, 3) determination of roughing tool path with structural data. The system is developed by using BIM-PC in the environment of Auto CAD R11, AutoLISP and MetaWare C. The proposed system shows an efficient algorithm for roughing planning with cross sectional information.