• Title/Summary/Keyword: 3D Air Flow

Search Result 396, Processing Time 0.029 seconds

A study on the design of tunnel lining insulation based on measurement of temperature in tunnel (터널 온도계측을 통한 라이닝 단열 설계에 관한 연구)

  • Kim, Dea-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.319-345
    • /
    • 2011
  • In case of tunnels in cold regions, a freeze of groundwater around tunnel may act as a barrier of tunnel drainage in winter, or may cause the inner extrusion of lining. In spite of that, a design of insulation for preventing the frost damage of tunnel lining has not been introduced in Korea, while foreign countries such as Norway and so on have a standard on insulation. In this study, a few freezing cases of road tunnels have been reviewed, and the results show that the freezing protection is necessary. In order to characterize the thermal distribution in the tunnel, following measurements have been performed at Hwa-ak tunnel; the temperature distribution by longitudinal lengths, the internal temperature of lining and the temperature distribution of the ground under pavement. From these measurements, the characteristics of the tunnel's internal temperature distribution due to temperature change in the air has been analyzed. Based on the measurement results on the temperature distribution at Hwa-ak tunnel, thermal flow tests on the rock specimen with and without insulation have been performed in the artificial climate chamber to investigate the performance of the insulation. Also, a number of 3D numerical analyses have been performed to propose appropriate insulation and insulation thicknesses for different conditions, which could prevent the frost damage of tunnel lining. As a result of the numerical analysis, air freezing index of 291$^{\circ}C{\cdot}$ Hr has been suggested as the threshold value for freezing criteria of groundwater behind the tunnel lining.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.

Evaporation Pressure Drop Characteristics with R-22 in the Plate and Shell Heat Exchangers

  • Park, Jae-Hong;Seo, Moo-Gyo;Lee, Ki-Baik;Kim, Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, evaporation pressure drop experiments were conducted with two types of plate and shell heat exchangers (P&SHE) using R-22. An experimental refrigerant loop has been established to measure the evaporation pressure drop of R-22 in a vertical P&SHE. The flow channels were formed by stacking three plates having a corrugated channel of a chevron angle of 45 dog. The R-22 flows down in one channel exchanging heat with the hot water flowing up in the other channel. The effect of the refrigerant mass flux, average heat flux, system pressure and vapor quality were explored in detail. During the experiment, the quality change between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.15. The present data showed that two types of P&SHE have similar trends. The pressure drop in-creases with the vapor quality for both types of P&SHE. At a higher mass flux, the Pressure drop is higher for the entire range of the vapor quality. Also, the increase in the average heat flux increases the pressure drop. Finally, at a higher system pressure, the pressure drop is found to be slightly lower compared to the lower system pressure.

HYLGS 모델을 활용한 수도권 매립지에서의 침출수-가스의 동시유동 해석에 관한 연구

  • 이광희;박용찬;성원모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.225-231
    • /
    • 1998
  • Open dump causes groundwater and soil contamination by leachate, air pollution by LFG (Landfill Gas). In this paper, in order to improve landfill researches which have been done about reduction of high leachate level and LFG collection in the Kimpo landfill separately, the effect of simultaneous flowing of leachate and LFG has been Studied. The HYLGS (Hanyang Leachate Gas Simulator) used in this study is a 3D, 2-phase, transient FDM model which can be applied to venting trenches in a landfill. From present numerical analysis it can be concluded that all the pressures of the Kimpo landfill grid system are almost the same and their maximum value in the center grid block of the system is approximately 26 m $H_2O$ (2.52 atm), that because the pressures of venting trench layer situated in the middle of the landfill have the lowest values and equal with air pressure, the venting trenches play an important role in landfill stabilization, that the flow of gas will be more difficult as time goes by owing to the increase of LGR(Leachate and gas ratio).

  • PDF

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

CFD ANALYSIS ON HEAT TRANSFER PERFORMANCE OF A REFRIGERATOR CONDENSER (냉장고 응축기의 전열성능에 대한 CFD 해석)

  • Yoo, S.S.;Hwang, D.Y.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.56-62
    • /
    • 2009
  • In this study, the heat transfer and flow field of a condenser used for a Kim-chi refrigerator is analysed with numerical method. Main objective is to present the basic data for designing a new condenser model with improvement of heat transfer performance. For CFD analysis, a commercial code, STAR CCM+ was used. The water was used for the inner working fluid and the air was used for the outer fluid. The condenser type used in this study is a flat plate fin-and-tube heat exchanger. As analysis parameters, the effect of condenser geometry and air velocity was investigated. For validation of the numerical calculations, the results were compared with the experimental ones. The heat transfer rates for both results were consistent with each other by maximum 5 % error. Based on this comparison, the numerical analysis was done with some modifications. As a result, it has been observed that there is a suitable fin pitch with which heat transfer performance of condenser is maximized.

An Experiment on Evaporating Heat Transfer of HCFC-22 for Transport Refrigeration System (HCFC-22 냉매사용 차량냉동시스템의 증발 열전달에 관한 실험)

  • Oh, M.D.;Kim, S.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.166-174
    • /
    • 1994
  • An experimental study has been performed to identify the evaporation characteristics of HCFC-22 for transport refrigeration system. Heat transfer coefficients were measured in a horizontal, smooth evaporating tube with an inner diameter of 10.7mm and a length of 2.8m. The refrigerant was heated electrically by surface-wrapped heaters and uniform power is applied along the tube. The entire tube was divided into 7 sections. Surface temperatures of tube and refrigerant temperature in each test section were measured. Pressure drops in each section and the inlet pressure were also measured. The mass flowrate of the refrigerant was controlled and measured. A single tube evaporation test was conducted for different ranges of mass flux of refrigerant, heat flux of evaporator and condensing temperature of transport refrigeration system. The evaporation heat transfer coefficients of HCFC-22 were compared with predictions from the well known Chen's correlations. Averaged heat transfer coefficients in this experiment range from $2kW/m^2/^{\circ}C$ to $3kW/m^2/^{\circ}C$. Most of the experimental results differ from the predicted ones by less than ${\pm}30%$.

  • PDF

Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House (공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션)

  • Kim, J.Y.;Mim, M.K.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF

Flow Boiling Heat Transfer of R-22 in a Flat Extruded Aluminum Multi-Port Tube

  • Kim Nae-Hyun;Sim Yang-Sup;Min Chang-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.148-157
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^{2}s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C\;to\;15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations un-derpredict the low mass flux and overpredict the high mass flux data.

Natural Convection Heat Transfer in Inclined Rectangular Enclosures (경사진 사각형 공간내의 자연대류 열전달)

  • Chang, Byong-Hoon
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • The laminar natural convection of air in 2-D rectangular enclosure in which two opposing isothermal walls were kept at different temperatures is investigated numerically for Rayleigh number up to $10^6$. Computations were performed for the width-to-height ratios of 1, 2, and 4, and for the inclination angle range of $0^{\circ}{\leq}{\theta}{\leq}90^{\circ}$. For each aspect ratio, the influence of the inclination angle on the flow patterns and heat transfer rates were examined for $10^3{\leq}Ra{\leq}10^6$. It is found that the growth of secondary flow in the corners led to the decrease in overall heat transfer for small aspect ratio case, and the transition from a three-cell structure to a unicell flow pattern in large aspect ratio led to a step-like change in heat transfer. A new correlation of mean Nusselt number is presented for the vertical case of ${\theta}=90^{\circ}$.