• Title/Summary/Keyword: 3D Air Flow

Search Result 396, Processing Time 0.025 seconds

Velocity and Spray Characteristics under Swirl Flows in a Model Combustor (모델연소기 선회유동장에서의 속도 및 분무특성)

  • Bae, C.S.;Lee, D.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

Size Measurements of Droplets Entrained in a Stagnant Bubbling Liquid Column

  • Jeong, Hae-Yong;No, Hee-Cheon;Song, Chul-Hwa;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.254-259
    • /
    • 1996
  • Phase Doppler particle analyze. (PDPA) is a instrument which can be used to obtain simultaneous size and velocity measurements in a multiphase flow. In this study, the size of the water droplets entrained from a bubbling surface of a stagnant liquid column is measured by PDPA with a specially designed transmitter of long focal length and large beam diameter. The test section tube is made of acryle with 18 mm I.D. and 900 mm length. The experimental data are obtained for the air superficial velocity between 0.7 m/s to 3.4 m/s at atmospheric pressure. The experimental results show that there exists large difference in the entrainment mechanism between the churn-turbulent flow and annular flow. Through the present study, the phase Doppler analyzer system is shown to be successfully applied to measure particle sizes larger than $2,000\mu\textrm{m}$ if a transmitter of long focal length is utilized.

  • PDF

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.149-152
    • /
    • 2007
  • The numerical simulations on the heat transfer and flow field were carried out for the improvement of the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The present geometry of the heat exchanger causes poor heat transfer since the air inside shell dose not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle.

  • PDF

Air-Water Test on the Direct ECC Bypass During LBLOCA Reflood Phase with DVI : UPTF Test 21-D Counterpart Test

  • Yun, Byong-Jo;Kwon, Tae-Soon;Song, Chul-Hwa;Euh, Dong-Jin;Park, Jong-Kyun;Cho, Hyoung-Kyu;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.315-326
    • /
    • 2001
  • Direct ECC bypass phenomena that occur in a reactor vessel downcomer with a Direct Vessel Injection (DVI) system during the reflood phase of a Large Break Loss-of-Coolant Accident (LBLOCA) are experimentally investigated using a transparent l/7.5 scaled down test facility of the Upper Plenum Test Facility (UPTF). A series of separate effect tests are peformed in order to investigate the mechanisms of direct ECC bypass and to find out its scaling parameters. Various flow regimes and phasic distribution in downcomer are identified and mapped, and the fraction of direct ECC bypass is measured under a wide range of air and water injection conditions. From the counterpart test of the UPTF Test 21-D, the dimensionless gas velocity ( $j^{*}$$_{g,eff}$) is derived experimentally, which is believed to be a major scaling parameter for the fraction of direct ECC bypass. And it is found out that the direct ECC bypass is greatly affected by the spreading width of ECC water film and the geometric configuration of the downcomer.r.

  • PDF

Characteristics of Heat Transfer in the Channel with Twisted Tape

  • Ahn, Soo-Whan;Kang, Ho-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. The rib height-to-channel hydraulic diameter ratio, $e/D_h$, is kept at 0.067 and test section length-to-hydraulic diameter ratio, $L/D_h$ is 30. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite ribbed walls of the square channel. Results show that the twisted tape with interrupted ribs provides a higher overall heat transfer performance over the twisted tape with no ribs.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Fuel Injection Angle and Cone Angle in the PFI Dual Injection Engine (PFI Dual Injection 엔진의 연료 분사각도와 분무각에 따른 엔진 내부 유동 및 연료 거동 특성)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.221-229
    • /
    • 2015
  • The PFI dual injection engine using one injector per an intake port was developed for solving the DISI engine cost problem. Excellent fuel atomization and targeting of the PFI dual injection engine made enhancement on the fuel efficiency and engine power. In order to develop a PFI dual injection engine, characteristics of the in-cylinder flow and fuel behavior with respect to fuel injection angle and cone angle of the PFI dual injection engine was investigated. Numerical calculation was conducted to analyze 3D unsteady in-cylinder flow and fuel behavior using STAR-CD. The engine operating condition was 2,000rpm at WOT. As a result, the amount of intake air, evaporated fuel and fuel film according to injection angle and cone angle were presented. The results were influenced by interaction between injected fuel and intake port wall.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).

Effect of Solid Mass Inventory on Hydrodynamics Characteristics in a Circulating Fluidized Bed (순환유동층에서 유동매체량에 따른 수력학적 특성 연구)

  • Kim, E.K.;Shin, D.;Lee, J.;Kim, J.;Hwang, J.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.10-20
    • /
    • 2002
  • This paper discusses effect of solid mass inventory on the hydrodynamic characteristics of circulating fluidized bed(CFB). Operating parameters of solid mass inventory and air flow rates were varied to understand their effects on fludization pattern. Experimental measurements were made in a CFB of which height and diameter are 3m and 0.05m respectively. Black SiC particles ranging from $100{\mu}m\;to\;500{\mu}m$ were employed as the bed material. Superficial gas velocity of riser and J-valve fluidizing velocity were in the ranges of $1.39{\sim}3.24m/s\;and\;0.139{\sim}0.232m/s$, respectively. The axial solid fraction and solid circulation rate of CFB were calculated based on the experimental data and compared with modellings through IEA-CFBC Model and commercial CFD code.

  • PDF

En-Route Trajectory calculation using Flight Plan Information for Effective Air Traffic Management

  • Kim, Yong-Kyun;Jo, Yun-Hyun;Yun, Jin-Won;Oh, Taeck-Keun;Roh, Hee-Chang;Choi, Sang-Bang;Park, Hyo-Dal
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.375-384
    • /
    • 2010
  • Trajectory modeling is foundational for 4D-Route modeling, conflict detection and air traffic flow management. This paper proposes a novel algorithm based Vincenty's fomulas for trajectory calculation, combined with the Dijkstra algorithm and Vincenty's formulas. Using flight plan simulations our experimental results show that our method of En-route trajectory calculation exhibits much improved performance in accuracy.