• Title/Summary/Keyword: 3D 정합

Search Result 735, Processing Time 0.021 seconds

Registration and Visualization of Medical Image Using Conditional Entropy and 3D Volume Rendering (조건부 엔트로피와 3차원 볼륨 렌더링기법을 이용한 의료영상의 정합과 가시화)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.277-286
    • /
    • 2009
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. In this paper, we introduce a robust brain registration technique for correcting the difference between two temporal images by the different coordinate systems in MR and CT image obtained from the same patient. Two images are registered where this measure is minimized using a modified conditional entropy(MCE: Modified Conditional Entropy) computed from the joint histograms for the intensities of two given images, we conduct the rendering for visualization of 3D volume image.

Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites (토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발)

  • Kim, Yonggun;Park, Suyeul;Kim, Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.689-699
    • /
    • 2022
  • Recently, high productivity capabilities have been improved due to the application of advanced technologies in various industries, but in the construction industry, productivity improvements have been relatively low. Research on advanced technology for the construction industry is being conducted quickly to overcome the current low productivity. Among advanced technologies, 3D scan technology is widely used for creating 3D digital terrain models at construction sites. In particular, the 3D digital terrain model provides basic data for construction automation processes, such as earthwork machine guidance and control. The quality of the 3D digital terrain model has a lot of influence not only on the performance and acquisition environment of the 3D scanner, but also on the denoising, registration and merging process, which is a preprocessing process for creating a 3D digital terrain model after acquiring terrain scan data. Therefore, it is necessary to improve the terrain scan data processing performance. This study seeks to solve the problem of density inhomogeneity in terrain scan data that arises during the pre-processing step. The study suggests a 'pixel-based point cloud comparison algorithm' and verifies the performance of the algorithm using terrain scan data obtained at an actual earthwork site.

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM (3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

Markerless Image-to-Patient Registration Using Stereo Vision : Comparison of Registration Accuracy by Feature Selection Method and Location of Stereo Bision System (스테레오 비전을 이용한 마커리스 정합 : 특징점 추출 방법과 스테레오 비전의 위치에 따른 정합 정확도 평가)

  • Joo, Subin;Mun, Joung-Hwan;Shin, Ki-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This study evaluates the performance of image to patient registration algorithm by using stereo vision and CT image for facial region surgical navigation. For the process of image to patient registration, feature extraction and 3D coordinate calculation are conducted, and then 3D CT image to 3D coordinate registration is conducted. Of the five combinations that can be generated by using three facial feature extraction methods and three registration methods on stereo vision image, this study evaluates the one with the highest registration accuracy. In addition, image to patient registration accuracy was compared by changing the facial rotation angle. As a result of the experiment, it turned out that when the facial rotation angle is within 20 degrees, registration using Active Appearance Model and Pseudo Inverse Matching has the highest accuracy, and when the facial rotation angle is over 20 degrees, registration using Speeded Up Robust Features and Iterative Closest Point has the highest accuracy. These results indicate that, Active Appearance Model and Pseudo Inverse Matching methods should be used in order to reduce registration error when the facial rotation angle is within 20 degrees, and Speeded Up Robust Features and Iterative Closest Point methods should be used when the facial rotation angle is over 20 degrees.

Automatic Lung Registration using Local Distance Propagation (지역적 거리전파를 이용한 자동 폐 정합)

  • Lee Jeongjin;Hong Helen;Shin Yeong Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.41-49
    • /
    • 2005
  • In this Paper, we Propose an automatic lung registration technique using local distance propagation for correcting the difference between two temporal images by a patient's movement in abdomen CT image obtained from the same patient to be taken at different time. The proposed method is composed of three steps. First, lung boundaries of two temporal volumes are extracted, and optimal bounding volumes including a lung are initially registered. Second, 3D distance map is generated from lung boundaries in the initially taken volume data by local distance propagation. Third, two images are registered where the distance between two surfaces is minimized by selective distance measure. In the experiment, we evaluate a speed and robustness using three patients' data by comparing chamfer-matching registration. Our proposed method shows that two volumes can be registered at optimal location rapidly. and robustly using selective distance measure on locally propagated 3D distance map.

Fast 3D Model Extraction Algorithm with an Enhanced PBIL of Preserving Depth Consistency (깊이 일관성을 보존하는 향상된 개체군기반 증가 학습을 이용한 고속 3차원 모델 추출 기법)

  • 이행석;장명호;한규필
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.59-66
    • /
    • 2004
  • In this paper, a fast 3D model extraction algorithm with an enhanced PBIL of preserving depth consistency is proposed for the extraction of 3D depth information from 2D images. Evolutionary computation algorithms are efficient search methods based on natural selection and population genetics. 2D disparity maps acquired by conventional matching algorithms do not match well with the original image profile in disparity edge regions because of the loss of fine and precise information in the regions. Therefore, in order to decrease the imprecision of disparity values and increase the quality of matching, a compact genetic algorithm is adapted for matching environments, and the adaptive window, which is controlled by the complexity of neighbor disparities in an abrupt disparity point is used. As the result, the proposed algorithm showed more correct and precise disparities were obtained than those by conventional matching methods with relaxation scheme.

Realistic 3D model generation of a real product based on 2D-3D registration (2D-3D 정합기반 실제 제품의 사실적 3D 모델 생성)

  • Kim, Gang Yeon;Son, Seong Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5385-5391
    • /
    • 2013
  • As on-line purchases is activated, customers' demand increases for the realistic and accurate digital information of a product design. In this paper, we propose a practical method that can generate a realistic 3D model of a real product using a 3D geometry obtained by a 3D scanner and its photographic images. In order to register images to the 3D geometry, the camera focal length, the CCD scanning aspect ratio and the transformation matrix between the camera coordinate and the 3D object coordinate must be determined. To perform this 2D-3D registration with consideration of computational complexity, a three-step method is applied, which consists of camera calibration, determination of a temporary optimum translation vector (TOTV) and nonlinear optimization for three rotational angles. A case study for a metallic coated industrial part, of which the colour appearance is hardly obtained by a 3D colour scanner has performed to demonstrate the effectiveness of the proposed method.

A NTSS of 3 Levels Block Matching Algorithm using Multi-Resolution (다중해상도를 이용한 새로운 3단계 블록정합 알고리즘)

  • Joo Heon-Sik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.633-644
    • /
    • 2004
  • In this paper, we notice that the original NTSS algorithm can be proposed as the NTSS-3 Level algorithm by the multi-resolution technique. The fast block matching algorithm affects the speed by the patten combination and this paper proposes the block matching algorithm in different levels by multi-resolution technique, quite different from the original NTSS Patten. The block matching algorithm requires the multi-candidate to reduce the occurrence of low-image quality by the local minima problem. The simulation result compared to FS shows search speed 16 times quicker, and the PSNR 0.11-0.12[dB] gets improved Image quality compared to the original fast block matching algorithm NTSS, and the speed is improved up to 0.1 times for improved image by the search point portion.

Signal Transmission Characteristics Improvement of Serial Advanced Technology Attachment Connector (SATA 커넥터의 신호 전달 특성 개선)

  • Yang, Jeong-Kyu;Kim, Moon-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.800-803
    • /
    • 2012
  • 본 논문에서는 SATA(Serial Advanced Technology Attachment) 커넥터의 차동 임피던스를 정합하여 신호 전달 특성을 개선한다. 3차원 FEM(Finite Elements Method) 전자기장 시뮬레이터를 이용하여 SATA 커넥터의 차동 모드 S-파라미터를 추출하고, 신호 전달 특성을 분석한다. SATA 커넥터의 반사 손실 ($S_{dd11}$)은 5 GHz 까지 20 dB 이하의 값을 나타내고, 삽입 손실($S_{dd21}$)은 0.1 dB 이하의 값을 나타낸다. 또한 인덕턴스, 커패시턴스, 상호 인덕턴스, 상호 커패시턴스를 추출하여 차동 임피던스를 계산한다. SATA 커넥터의 차동 임피던스는 107.3 ${\Omega}$으로 부정합이다. 차동 임피던스를 정합하기위해서 커넥터 신호 핀을 dx 방향으로 설계 변경한다. $d_x$ 방향으로 0.04 mm 증가 시켰을 때 차동 임피던스가 99.5 ${\Omega}$으로 최적으로 정합되었다. 또한 반사 손실은 1.5 GHz 에서 11 dB 개선되고, 삽입 손실은 최대 약 0.05 dB 개선되었다.

  • PDF

3D Model Extraction Method Using Compact Genetic Algorithm from Real Scene Stereoscopic Image (소형 유전자 알고리즘을 이용한 스테레오 영상으로부터의 3차원 모델 추출기법)

  • Han, Gyu-Pil;Eom, Tae-Eok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.538-547
    • /
    • 2001
  • Currently, 2D real-time image coding techniques had great developments and many related products were commercially developed. However, these techniques lack the capability of handling 3D actuality, occurred by the advent of virtual reality, because they handle only the temporal transmission for 2D image. Besides, many 3D virtual reality researches have been studied in computer graphics. Since the graphical researches were limited to the application of artificial models, the 3D actuality for real scene images could not be managed also. Therefore, a new 3D model extraction method based on stereo vision, that can deal with real scene virtual reality, is proposed in this paper. The proposed method adapted a compact genetic algorithm using population-based incremental learning (PBIL) to matching environments, in order to reduce memory consumption and computational time of conventional genetic algorithms. Since the PBIL used a probability vector and competitive learning, the matching algorithm became simple and the computation load was considerably reduced. Moreover, the matching quality was superior than conventional methods. Even if the characteristics of images are changed, stable outputs were obtained without the modification of the matching algorithm.

  • PDF