• Title/Summary/Keyword: 3D 재현

Search Result 725, Processing Time 0.026 seconds

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Changes of the surface roughness depending on immersion time and powder/liquid ratio of various tissue conditioners (수종의 조직 양화재의 침수시간과 분액비에 따른 표면 거칠기의 변화)

  • Kim, Kyung-Soo;Moon, Hong-Suk;Shim, June-Sung;Jung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.108-118
    • /
    • 2009
  • Statement of problem: Volume stability, microstructure reproducibility and fluidity along with compatibility with dental stone must be in consideration in order to use tissue conditioner as a material for functional impression. There are few studies concerning the influence of time factor in oral condition on surface roughness of the stone and optimal retention period in the oral cavity considering such changes in surface roughness. Purpose: The purpose of this study was to find out the influence of various kinds of tissue conditioner, its powder/liquid ratio and immersion time on surface roughness of the stone. Material and methods: Materials used in this study were the three kinds of tissue conditioners(Coe-Comfort, Visco-Gel, Soft-Liner) and were grouped into three: group R-mixed with standard powder/liquid ratio that was recommended by the manufacturers, group M-mixed with 20% more powder, group L-mixed with 20% less powder. Specimens were made with the size of 20 mm diameter and 2 mm width. Each tissue conditioner specimens were subdivided into 5 groups according to the immersion time(0 hour, 1 day, 3 days, 5 days, 7 days), completely immersed into artificial saliva and were stored under $37^{\circ}C$. Specimens of which the given immersion time elapsed were taken out and were poured with improved stone, making the stone specimens. Surface roughness of the stone specimens was measured by a profilometer. Results: Within the limitation of this study, the following results were drawn. 1. Major influencing factor on surface roughness of the stone model made from tissue conditioner was the retention period(contribution ratio($\rho$)=62.86%, P<.05) of the tissue conditioner in oral cavity to make functional impression. 2. In case of Coe-Comfort, higher mean surface roughness value of the stone model with statistical significance was observed compared to that of Soft-Liner and Visco-Gel as immersion time changes(P<.05). 3. In case of group L(less), higher mean surface roughness value of the stone model with statistical significance was observed compared to that of R(recommended) and M(more) group as immersion time changes(P<.05). Conclusion: We may conclude that as the retention period of time in oral cavity influences surface roughness of the stone model the most and as the kind of tissue conditioner and its P/L ratio may influence also, clinician should well understand the optimal retention period in oral cavity and choose the right tissue conditioner for the functional impression, thus making the functional impression with tissue conditioner usefully.

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

Genetic Diversity of Korean Native Chicken Populations in DAD-IS Database Using 25 Microsatellite Markers (초위성체 마커를 활용한 가축다양성정보시스템(DAD-IS) 등재 재래닭 집단의 유전적 다양성 분석)

  • Roh, Hee-Jong;Kim, Kwan-Woo;Lee, Jinwook;Jeon, Dayeon;Kim, Seung-Chang;Ko, Yeoung-Gyu;Mun, Seong-Sil;Lee, Hyun-Jung;Lee, Jun-Heon;Oh, Dong-Yep;Byeon, Jae-Hyun;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.46 no.2
    • /
    • pp.65-75
    • /
    • 2019
  • A number of Korean native chicken(KNC) populations were registered in FAO (Food and Agriculture Organization) DAD-IS (Domestic Animal Diversity Information Systems, http://www.fao.org/dad-is). But there is a lack of scientific basis to prove that they are unique population of Korea. For this reason, this study was conducted to prove KNC's uniqueness using 25 Microsatellite markers. A total of 548 chickens from 11 KNC populations (KNG, KNB, KNR, KNW, KNY, KNO, HIC, HYD, HBC, JJC, LTC) and 7 introduced populations (ARA: Araucana, RRC and RRD: Rhode Island Red C and D, LGF and LGK: White Leghorn F and K, COS and COH: Cornish brown and Cornish black) were used. Allele size per locus was decided using GeneMapper Software (v 5.0). A total of 195 alleles were observed and the range was 3 to 14 per locus. The MNA, $H_{\exp}$, $H_{obs}$, PIC value within population were the highest in KNY (4.60, 0.627, 0.648, 0.563 respectively) and the lowest in HYD (1.84, 0.297, 0.286, 0.236 respectively). The results of genetic uniformity analysis suggested 15 cluster (${\Delta}K=66.22$). Excluding JJC, the others were grouped in certain cluster with high genetic uniformity. JJC was not grouped in certain cluster but grouped in cluster 2 (44.3%), cluster 3 (17.7%) and cluster8 (19.1%). As a results of this study, we can secure a scientific basis about KNC's uniqueness and these results can be use to basic data for the genetic evaluation and management of KNC breeds.

Development of a Simultaneous Analytical Method for Determination of Insecticide Broflanilide and Its Metabolite Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살충제 Broflanilide 및 대사물질 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Kim, Ji-Young;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • An analytical method was developed for the determination of broflanilide and its metabolites in agricultural products. Sample preparation was conducted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method and LC-MS/MS (liquid chromatograph-tandem mass spectrometer). The analytes were extracted with acetonitrile and cleaned up using d-SPE (dispersive solid phase extraction) sorbents such as anhydrous magnesium sulfate, primary secondary amine (PSA) and octadecyl ($C_{18}$). The limit of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. The recovery results for broflanilide, DM-8007 and S(PFP-OH)-8007 ranged between 90.7 to 113.7%, 88.2 to 109.7% and 79.8 to 97.8% at different concentration levels (LOQ, 10LOQ, 50LOQ) with relative standard deviation (RSD) less than 8.8%. The inter-laboratory study recovery results for broflanilide and DM-8007 and S (PFP-OH)-8007 ranged between 86.3 to 109.1%, 87.8 to 109.7% and 78.8 to 102.1%, and RSD values were also below 21%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food and Drug Safety Evaluation guidelines (2016). Therefore, the proposed analytical method was accurate, effective and sensitive for broflanilide determination in agricultural commodities.