• Title/Summary/Keyword: 3D 모형

Search Result 1,549, Processing Time 0.032 seconds

The Simulation of Upwelling Flow Using FLOW-3D (FLOW-3D 모형을 이용한 용승류 모의)

  • Oh, Nam-Sun;Choi, Ik-Chang;Kim, Dae-Geun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.451-457
    • /
    • 2011
  • Large scale fishing ground can be made by upwelling flow. Recently the fishing ground development projects, using artificial upwelling by large structure under the sea, are in progress in Japan and Korea. In this study upwelling flow is simulated with FLOW-3D model. Using the movement of marker in FLOW-3D, the method for simulating upwelling of nutrients was experimented. The results show that FLOW-3D model can evaluate upwelling effect before starting real project.

Introduction of 3D Printing Technique applied for producing Physical Models of Underground Mine Openings (지하광산갱도의 물리모형 구현을 위한 3D프린팅 기술 적용사례)

  • Yoon, Dong-Ho;Fereshtenejad, Sayedalireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • Physical models of underground mines are very useful to the design of mine openings and the management of work progress of mining companies as well as to consulting. Even though 3D image realization techniques for mine openings have already been developed by various companies the physical models are still widely used because they can provide better understanding without sophisticated equipments for the most of people. Conventional materials for the physical models are paper and acryl which demand a lot of time and labor to make the model even with low precision and high cost. In this research, 3D printing technique is adopted to develop the physical model with relatively short time, low cost, and proper degree of precision. Finally the computer software "UMine2STL" was developed and verified by comparing the printed product with its design.

An Interpretive Analysis of Magnetotelluric Response for a Three-dimensional Body Using FDM (FDM을 이용한 MT 탐사의 3차원 모형 반응 연구)

  • Han Nuree;Lee Seong Kon;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.136-147
    • /
    • 2004
  • In this study, the characteristics of magnetotelluric (MT) responses due to a three-dimensional (3-D) body are analyzed with 3-D numerical modeling. The first model for the analysis consists of a single isolated conductive body embedded in a resistive homogeneous half-space. The second model has an additional conductive overburden while the other conditions remain the same as the first one. The analysis of apparent resistivities shows well that the 3-D effects are dominant over some frequency range for the first model. Two mechanisms, current channeling and induction, for secondary electric fields due to the conductive body are analyzed at various frequencies: at high frequencies induction is more dominant than channeling, while at low frequencies channeling is more dominant than induction. Tippers have a strong relation to the position of anomalous body and the real and imaginary parts of induction vector also indicate the position of anomalous body. off-line conductive anomaly sometimes causes severe problem in 2-D interpretation. In such case, induction vector analysis can give information on the existence and location of the anomalous body. Each parameter of the second model shows similar responses as those of the first model. The only difference is that the magnitude of all parameters is decreased and that the domain showing the 3-D effects becomes narrower. As shown in this study, the analysis of 3-D effects provides a useful and effective means to understand the 3-D subsurface structure and to interpret MT survey data.

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

A study on surface settlement characteristics according to the cohesive soil depth through laboratory model tests (실내모형시험을 통한 점성토 지반의 토피고에 따른 지표침하 특성연구)

  • Kim, Young-Joon;Im, Che-Geun;Kang, Se-Gu;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.507-520
    • /
    • 2014
  • In this study, the surface displacement was investigated according to the various depth of cover when the tunnel excavation equipment was used in a clay soil. For this the laboratory scaled model test was carried out using the soil sample similar to the in-situ conditions. We carried out four tests according to tunnel depth(1.5D, 2.0D, 2.5D, 3.0D). The distribution of impact due to tunnelling was quantitatively analyzed in the three-dimension by measuring the surface displacement. In addition, the pattern of surface displacements was figured out.

Design of Emergency Spillway Using Hydraulic and Numerical Model - ImHa Multipurpose Dam (수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐)

  • Jeon, Tae-Myoung;Kim, Hyung-Il;Park, Hyung-Seop;Baek, Un-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1726-1731
    • /
    • 2006
  • Hydraulic and numerical models were applied to design the emergency spillway of ImHa multipurpose Dam. For the numerical model, FLOW-3D was used to evaluate the three-dimensional flow in the spillway. The results of hydraulic model were compared with those of the numerical model which were separated into four zones such as approaching zone, weir zone, transition & tunnel chute zone, and dissipator zone. Moreover, for optimum design of the spillway, the hydraulic and numerical models were performed for the basic plan. Solving the problems of the basic plan, the optimized alternative design was proposed. The numerical models for various conditions of the spillway were performed, which is not always feasible in the hydraulic models. Verified by using the hydraulic models, the optimum alternative design was proposed.

  • PDF

Numerical Analysis of the Turbulent Flow through an Oil-Grit Separator according to Turbulent Models (난류모형에 따른 유류 유사분리기내에서의 유류-흐름해석)

  • Lee, Jin-Woo;Yoo, Je-Seon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1761-1764
    • /
    • 2008
  • 본 연구에서는 상용 3차원 수치모형 코드인 FLOW-3D를 이용하여 난류모형에 따른 유류-유사 분리기 내에서 유체의 흐름거동을 해석하였다. 우수로 인해 발생한 유출수는 유류, 유사 및 쓰레기 등을 포함하고 있기 때문에 3차원적 거동을 하고 다양한 흐름특성을 갖는다. 유류-유사 분리기는 도심지의 지하구조물로서 이러한 유출수의 수질을 개선하여 하천이나 강으로 흘려보내는 기능을 갖는다. 분리기내에서의 복잡한 흐름 거동을 해석하기위해 정류판과 유류흡착기로 구성된 유류-유사분리기를 제작하여 수치모의를 실시하였다. 유류-유사분리기로 유입되는 유입수에 포함된 유사는 유체의 흐름이 분리기내에 설치되어있는 정류판을 지나면서 여과되도록 하였고 유사와 함께 유입수에 포함된 유류는 유류흡착기를 통해 여과되도록 하였다. 기존의 수리실험 결과와 수치모의를 통한 연구결과에서 유입수에 포함된 유사와 유류는 유류흡착기를 설치하였을 경우 유사와 유류의 분류활동이 더 활발하게 이루어지는 것을 알 수 있었다. 따라서, 본 연구에서는 유사와 유류의 포획률을 증가시키기 위한 단계로서 유류-유사분리기에 유류흡착기를 설치하고 분리기내의 복잡한 흐름을 각각의 난류모형을 이용하여 비교분석하였다. 수치모의는 $\kappa$ - 모형과 LES(Large Eddy Simulation) 모형의 두가지 난류모형을 사용하였고, FLOW-3D를 이용하여 3차원 수치모의를 실시하였다.

  • PDF

Development of an Strategic Model for the Selection of a National IT R&D Strategic Project (국가 IT R&D 전략과제 선정 모형개발)

  • Ryu, Dong-Hyun;Park, Jeong-Yong;Lee, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.501-509
    • /
    • 2011
  • In this paper, we offer a new strategic Portfolio Model for national IT R&D project selection in Korea. A risk and return (R-R) Portfolio Model was developed using an objectively quantified index on the two axes of risk and return, in order to select a strategic project and allocate resources in compliance with a national IT R&D strategy. We strategize using the R-R Portfolio Model to solve the non-strategy and subjectivity problems of the existing national R&D project selection Model. We also use the quantified evaluation index of the IT technology road map (TRM) and the technology level Survey (TLS) for the subjectivity of project selection, and try to discover the weights using the analytic hierarchy process (AHP). In addition, we intend to maximize the chance for a successful national IT R&D project, by selecting a strategic Portfolio project and balancing the allocation of resources effectively and objectively.

Analysis of Flow and BOD Transport at the Downstream of Nam River Dam Using 2-D and 3-D Semi-coupled Models (2·3차원 준연계 모형을 이용한 남강댐 하류부 흐름 및 BOD 수송 해석)

  • Kim, Ji-Hoon;Song, Chang-Geun;Kim, Young-Do;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.331-347
    • /
    • 2012
  • The downstream of the Nam River Dam is crucial region for long-term water resource planning for Busan and Gyeongnam Province. Thus, the analysis of flow behavior and water quality is necessary for the sustainable surface water management and the control of pollutant source. In this study, the flow field and BOD transport at the downstream of Nam River Dam were analyzed by incorporating 2-D water quality model, RAM4 and 3-D water quality model, WASP with the hydrodynamic model, RAM2 and EFDC, respectively. The application of 2-D flow analysis model, RAM2 showed that velocity distributions at the five transverse sections of the meandering part closely followed the measured values by ADCP, and the flow field and overflow characteristic at the submerged weir showed satisfactory performance compared with the result of 3-D EFDC model. In addition, the BOD concentration field obtained by RAM2-RAM4 coupled modeling was in good agreement with the result by EFDC-WASP model throughout the computational domain. The hydrodynamic characteristic and water quality at the downstream reach of Nam River Dam are mainly influenced by the Dam discharge, and the water quantity is closely related to the water quality control and fishery environment at the lower part of Nakdong River. Therefore, when further quantitative analysis is necessary regarding these issues, 2-D semi-coupled modeling is recommended in terms of computational effectiveness and model application aspect.

Numerical model for infiltration in riverbank and its foundation (하부투수층을 고려한 제방침투 수치모델링)

  • Lee, Nam-Joo;Kim, Ji-Hyun;Yu, Kwon-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.541-545
    • /
    • 2012
  • 이 연구에서는 SEEP2D 모형을 사용하여 하부에 투수지반을 갖는 제방 내부의 침투흐름에 대한 수치모의를 수행하였다. 제방의 재료는 4대강사업 낙동강 제2하구둑 건설 현장에서 채취한 시료를 사용하였으며, 입도분석과 들밀도시험을 통해 구한 제방의 건조단위중량과 다짐도 및 제방의 투수계수는 각각 $1.372g/cm^3$, 93%, 1.35 m/day이다. 투수지반층과 1:3 비탈경사를 가지는 제방모형을 제작하여 연직 이차원 정상류 침투해석 모형을 해석하는 SEEP2D 프로그램을 사용하여 나온 결과 값을 수리모형 실험 결과 값과 비교하였다. 모의조건은 0.45 m, 0.50 m, 0.55 m, 0.60 m의 4가지 수위(각각 Case1~4)조건에 대하여 수리모형실험과 동일한 조건을 수치모형에 적용하였다. 수치모형의 결과는 실험결과와 비교적 일치하였지만 제방의 비탈사면이 시작하는 부분에서는 수치모형의 결과 값보다 실험결과 값이 작은 것으로 확인되었다. 각각의 조건별로 수치해와 실험 결과값을 비교해본 결과 대체적으로 비슷한 양상을 보였지만 제방의 비탈사면이 시작하는 지점부터 수치모형의 결과 값보다 실험결과 값이 작은 것으로 확인되었다. Case3의 경우 4.35 m 지점부터 6.00 m 지점까지 유출이 발생하였으며 수치모형의 결과값과 실험결과 값의 차이가 가장 작게 나타났다. 사면유출 길이는 Case4에서 가장 길게 나타났으며 최대 4.10 cm로 발생하였다.

  • PDF