• Title/Summary/Keyword: 3D 모델 재구성

Search Result 96, Processing Time 0.03 seconds

Reconstruction of a 3D Model using the Midpoints of Line Segments in a Single Image (한 장의 영상으로부터 선분의 중점 정보를 이용한 3차원 모델의 재구성)

  • Park Young Sup;Ryoo Seung Taek;Cho Sung Dong;Yoon Kyung Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.168-176
    • /
    • 2005
  • We propose a method for 3-dimensionally reconstructing an object using a line that includes the midpoint information from a single image. A pre-defined polygon is used as the primitive and the recovery is processed from a single image. The 3D reconstruction is processed by mapping the correspondence point of the primitive model onto the photo. In the recent work, the reconstructions of camera parameters or error minimizing methods through iterations were used for model-based 3D reconstruction. However, we proposed a method for the 3D reconstruction of primitive that consists of the segments and the center points of the segments for the reconstruction process. This method enables the reconstruction of the primitive model to be processed using only the focal length of various camera parameters during the segment reconstruction process.

3-D Primitive Reconstruction from Center Point of Line Segment (선분의 중점을 이용한 3차원 원시기하모델 복원)

  • 조성동;윤경현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.721-723
    • /
    • 2002
  • 본 논문은 한 장의 사진으로부터 선분과 선분의 중점을 이용한 원시기하모델의 3차원 재구성 시스템을 제안한다. 이 시스템은 선분과 중점을 추출할 수 있는 미리 정의된 다면체를 원시기하모델로 사용하며 그 원시기하모델의 각 점을 사용자가 사진에 매핑 시키는 것으로서 3차원 재구성이 수행된다. 미리 정의된 원시기하모델의 사용은 사용자에게 기존의 소실점 입력 방식보다 직관적인 3차원 재구성을 가능하게 한다. 사진에 매핑된 원시기하모델이 포함하고 있는 2차원상의 선분과 선분의 중점으로부터 원시기하모델을 3차인 재구성한다.

  • PDF

Efficient Reconstruction of 3D Human Body Pose Using Spatio-Temporal Features (시-공간 특징을 이용한 효율적인 3차원 인체 자세 재구성)

  • Yang Hee-Deok;Ahmad Mohiuddin;Lee Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.892-894
    • /
    • 2005
  • 본 논문에서는 스테레오 영상에서 깊이 정보를 추출하여 사람의 자세를 학습된 2차원 깊이 영상들의 선형 결함으로 표현하여 3차원 인체 모델을 재구성하는 방법을 제안한다. 한 장의 2차원 깊이 영상으로 최소 제곱법을 이용하여 프로토타입 깊이 영상의 선형 결합으로 표현되는 최적의 계수를 찾을 수 있다. 입력된 깊이 영상의 3차원 인체 모델은 프로토타입 깊이 영상에서 예측된 계수를 적용하여 생성한다. 학습 단계에서는 데이터를 계층적으로 나누어 모델을 생성한다. 또한, 재구성 단계에서는 실루엣 영상과 깊이 영상으로부터 계층적으로 나누어진 학습 데이터를 이용하여 3차원 인체 자세를 재구성한다. 학습 및 재구성의 마지막 단계에서는 실루엣 영상 대신 깊이 영상을 이용하여 3차원 인체 모델을 재구성한다. 한 장의 실루엣 영상을 이용하면 영상의 노이즈에 민감하기 때문에 재구성 단계의 상위 레벨에서는 실루엣 영상의 누적 영상을 이용한다. 실험 결과는 제안된 방법이 효율적으로 3차원 인체 자세를 재구성함을 보여준다.

  • PDF

A Design of A Dynamic Configurational Multimedia Spreadsheet for Effective HCI (효과적인 HCI를 위한 동적 재구성 멀티미디어 스프레드쉬트 설계)

  • Jee Sung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • The multimedia visualizational spreadsheet environment is shown to be extremely effective in supporting the organized visualization of multi-dimensional data sets. In this paper, we designed the visualization model that consists of the configurational 2D arrangement of spreadsheet elements at run time and each spreadsheet element has a novel framestack. As the feature, it supports 3D data structure of each element on the proposed model. It enables the visualization spreadsheet 1) to effectively manage, organize, and compactly encapsulate multi-dimensional data sets, 2) to reconfigure cell-structures dynamically according to client request, and 3) to rapidly process interactive user interface. Using several experiments with scientific users, the model has been demonstrated to be a highly interactive visual browsing tool for 2D and 3D graphics and rendering in each frame.

  • PDF

Three Dimensional Target Volume Reconstruction from Multiple Projection Images (다중투사영상을 이용한 표적체적의 3차원 재구성)

  • 정광호;진호상;이형구;최보영;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • In the radiation treatment planning (RTP) process, especially for stereotactic radiosurgery (SRS), knowing the exact volume and shape and the precise position of a lesion is very important. Sometimes X-ray projection images, such as angiograms, become the best choice for lesion identification. However, while the exact target position can be acquired by bi-projection images, 3D target reconstruction from bi-projection images is considered to be impossible. The aim of this study was to reconstruct the 3D target volume from multiple projection images. It was assumed that we knew the exact target position in advance, and all processes were performed in Target Coordinates, where the origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. The Reconstruction Box was made up of voxels of 3D matrices. Projection images were transformed into 3D in this virtual box using a geometric back-projection method. The resolution and the accuracy of the reconstructed target volume were dependent on the target size. An algorithm was applied to an ellipsoid model and a horseshoe-shaped model. Projection images were created geometrically using C program language, and reconstruction was also performed using C program language and Matlab ver. 6(The Mathwork Inc., USA). For the ellipsoid model, the reconstructed volume was slightly overestimated, but the target shape and position proved to be correct. For the horseshoe-shaped model, reconstructed volume was somewhat different from the original target model, but there was a considerable improvement in determining the target volume.

  • PDF

A Study on the Application of ColMap in 3D Reconstruction for Cultural Heritage Restoration

  • Byong-Kwon Lee;Beom-jun Kim;Woo-Jong Yoo;Min Ahn;Soo-Jin Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.95-101
    • /
    • 2023
  • Colmap is one of the innovative artificial intelligence technologies, highly effective as a tool in 3D reconstruction tasks. Moreover, it excels at constructing intricate 3D models by utilizing images and corresponding metadata. Colmap generates 3D models by merging 2D images, camera position data, depth information, and so on. Through this, it achieves detailed and precise 3D reconstructions, inclusive of objects from the real world. Additionally, Colmap provides rapid processing by leveraging GPUs, allowing for efficient operation even within large data sets. In this paper, we have presented a method of collecting 2D images of traditional Korean towers and reconstructing them into 3D models using Colmap. This study applied this technology in the restoration process of traditional stone towers in South Korea. As a result, we confirmed the potential applicability of Colmap in the field of cultural heritage restoration.

Reconstruction of 3D Building Model from Satellite Imagery Based on the Grouping of 3D Line Segments Using Centroid Neural Network (중심신경망을 이용한 3차원 선소의 군집화에 의한 위성영상의 3차원 건물모델 재구성)

  • Woo, Dong-Min;Park, Dong-Chul;Ho, Hai-Nguyen;Kim, Tae-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.121-130
    • /
    • 2011
  • This paper highlights the reconstruction of the rectilinear type of 3D rooftop model from satellite image data using centroid neural network. The main idea of the proposed 3D reconstruction method is based on the grouping of 3D line segments. 3D lines are extracted by 2D lines and DEM (Digital Elevation Map) data evaluated from a pair of stereo images. Our grouping process consists of two steps. We carry out the first grouping process to group fragmented or duplicated 3D lines into the principal 3D lines, which can be used to construct the rooftop model, and construct the groups of lines that are parallel each other in the second step. From the grouping result, 3D rooftop models are reconstructed by the final clustering process. High-resolution IKONOS images are utilized for the experiments. The experimental result's indicate that the reconstructed building models almost reflect the actual position and shape of buildings in a precise manner, and that the proposed approach can be efficiently applied to building reconstruction problem from high-resolution satellite images of an urban area.

3D building modeling from airborne Lidar data by building model regularization (건물모델 정규화를 적용한 항공라이다의 3차원 건물 모델링)

  • Lee, Jeong Ho;Ga, Chill Ol;Kim, Yong Il;Lee, Byung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2012
  • 3D building modeling from airborne Lidar without model regularization may cause positional errors or topological inconsistency in building models. Regularization of 3D building models, on the other hand, restricts the types of models which can be reconstructed. To resolve these issues, this paper modelled 3D buildings from airborne Lidar by building model regularization which considers more various types of buildings. Building points are first segmented into roof planes by clustering in feature space and segmentation in object space. Then, 3D building models are reconstructed by consecutive adjustment of planes, lines, and points to satisfy parallelism, symmetry, and consistency between model components. The experimental results demonstrated that the method could make more various types of 3d building models with regularity. The effects of regularization on the positional accuracies of models were also analyzed quantitatively.

Reconstruction System of Road Environment using Image-based Modeling (이미지 기반 모델링을 이용한 도로환경 재구성 시스템)

  • Lee, Kye-Young;Lee, Yong-Jae;Shin, Yeong Gil
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • This paper presents a new modeling technique to reconstruct road environments. The reconstruction algorithm for road environments consists of three parts - reconstructing 3D models of architectures in road environments, editing and creating road models, and modeling auxiliary objects. Different modeling technique is applied to each of these three parts according to properties objects to be modeled contain. In this reconstruction system, modified Photogrammetric Modeling techique is used, of which the user interface is more convenient, and in which constraints of road environments are considered. These improvements make this road environment reconstruction system much simpler and easier to use compared with Photogrammetric Modeling technique[1, 2].

  • PDF

Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing (병렬 연산을 이용한 방출 단층 영상의 재구성 속도향상 기초연구)

  • Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.