• Title/Summary/Keyword: 3D 깊이 카메라

Search Result 201, Processing Time 0.022 seconds

On the Study of Initializing Extended Depth of Focus Algorithm Parameters (Extended Depth of Focus 알고리듬 파라메타 초기설정에 관한 연구)

  • Yoo, Kyung-Moo;Joo, Hyo-Nam;Kim, Joon-Seek;Park, Duck-Chun;Choi, In-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.625-633
    • /
    • 2012
  • Extended Depth of Focus (EDF) algorithms for extracting three-dimensional (3D) information from a set of optical image slices are studied by many researches recently. Due to the limited depth of focus of the microscope, only a small portion of the image slices are in focus. Most of the EDF algorithms try to find the in-focus area to generate a single focused image and a 3D depth image. Inherent to most image processing algorithms, the EDF algorithms need parameters to be properly initialized to perform successfully. In this paper, we select three popular transform-based EDF algorithms which are each based on pyramid, wavelet transform, and complex wavelet transform, and study the performance of the algorithms according to the initialization of its parameters. The parameters we considered consist of the number of levels used in the transform, the selection of the lowest level image, the window size used in high frequency filter, the noise reduction method, etc. Through extended simulation, we find a good relationship between the initialization of the parameters and the properties of both the texture and 3D ground truth images. Typically, we find that a proper initialization of the parameters improve the algorithm performance 3dB ~ 19dB over a default initialization in recovering the 3D information.

3D Modeling from 2D Stereo Image using 2-Step Hybrid Method (2단계 하이브리드 방법을 이용한 2D 스테레오 영상의 3D 모델링)

  • No, Yun-Hyang;Go, Byeong-Cheol;Byeon, Hye-Ran;Yu, Ji-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.7
    • /
    • pp.501-510
    • /
    • 2001
  • Generally, it is essential to estimate exact disparity for the 3D modeling from stereo images. Because existing methods calculate disparities from a whole image, they require too much cimputational time and bring about the mismatching problem. In this article, using the characteristic that the disparity vectors in stereo images are distributed not equally in a whole image but only exist about the background and obhect, we do a wavelet transformation on stereo images and estimate coarse disparity fields from the reduced lowpass field using area-based method at first-step. From these coarse disparity vectors, we generate disparity histogram and then separate object from background area using it. Afterwards, we restore only object area to the original image and estimate dense and accurate disparity by our two-step pixel-based method which does not use pixel brightness but use second gradient. We also extract feature points from the separated object area and estimate depth information by applying disparity vectors and camera parameters. Finally, we generate 3D model using both feature points and their z coordinates. By using our proposed, we can considerably reduce the computation time and estimate the precise disparity through the additional pixel-based method using LOG filter. Furthermore, our proposed foreground/background method can solve the mismatching problem of existing Delaunay triangulation and generate accurate 3D model.

  • PDF

Computation of Stereo Dense Disparity Maps Using Region Segmentation (영상에서의 분할정보를 사용한 스테레오 조밀 시차맵 생성)

  • Lee, Bum-Jong;Park, Jong-Seung;Kim, Chung-Kyue
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.517-526
    • /
    • 2008
  • Stereo vision is a fundamental method for measuring 3D structures by observing them from two cameras placed on different positions. In order to reconstruct 3D structures, it is necessary to create a disparity map from a pair of stereo images. To create a disparity map we compute the matching cost for each point correspondence and compute the disparity that minimizes the sum of the whole matching costs. In this paper, we propose a method to estimate a dense disparity map using region segmentation. We segment each scanline using region homogeneity properties. Using the segmented regions, we prohibit false matches in the stereo matching process. Disparities for pixels that failed in matching are filled by interpolating neighborhood disparities. We applied the proposed method to various stereo images of real environments. Experimental results showed that the proposed method is stable and potentially viable in practical applications.

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.

Deep Learning-Based Human Motion Denoising (딥 러닝 기반 휴먼 모션 디노이징)

  • Kim, Seong Uk;Im, Hyeonseung;Kim, Jongmin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1295-1301
    • /
    • 2019
  • In this paper, we propose a novel method of denoising human motion using a bidirectional recurrent neural network (BRNN) with an attention mechanism. The corrupted motion captured from a single 3D depth sensor camera is automatically fixed in the well-established smooth motion manifold. Incorporating an attention mechanism into BRNN achieves better optimization results and higher accuracy than other deep learning frameworks because a higher weight value is selectively given to a more important input pose at a specific frame for encoding the input motion. Experimental results show that our approach effectively handles various types of motion and noise, and we believe that our method can sufficiently be used in motion capture applications as a post-processing step after capturing human motion.

BD Andromedae의 주기 변화와 광도곡선 분석

  • Song, Mi-Hwa;Kim, Cheon-Hwi;U, Su-Wan;Yun, Yo-Ra;Han, Won-Yong;Bae, Tae-Seok;Jo, Yeong;Jin, Hye-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • 2010년 11월 05일부터 11월 29일 중 총 12일간 진천 소재 충북대학교 천문대의 60cm 반사망원경과 ST-8 CCD 카메라를 이용하여 BD And의 BVR CCD 측광 관측을 수행하여 처음으로 BVR 광도 곡선을 완성하였다. 또한, 극심시각 결정을 위한 측광관측이 레몬산 천문대 1m 반사 망원경과 충북대학교 천문대의 35cm 망원경으로 수행되었다. 우리의 관측을 통하여 모두 19개의 극심시각을 새로이 결정하였다. 새로운 관측은 이 별의 공전주기가 이전까지 알려진 0.4629일이 아니라 그 두 배인 0.9258일이며, 기산점도 반주기 바뀌어야 함을 보여준다. BD And의 광도요소를 $MinI=HJD2434962.8602+0.^d9258054E$으로 새롭게 개정하였다. 이 광도요소로 작성한 우리의 BVR 광도곡선은 제1식과 제2식의 깊이가 거의 비슷하며, 식바깥 부분에 잘 발달된 파형 모양을 보인다. 이는 BD And가 짧은 주기의 RS CVn형 식쌍성임을 나타내는 것이다. 우리의 극심시각을 포함한 총 130개의 극심시각에 대한 (O-C)도를 작성한 결과, BD And의 공전주기가 규칙적으로 변화하는 것을 발견하였다. 이 변화를 보이지 않는 제3천체에 의한 광시간 효과로 가정하여, 궤도이심율이 0.78이며, 9.19년의 주기를 가진 광시간 궤도를 결정하였다. 우리의 광도곡선을 2003년 Wilson-Devinney 쌍성 모형으로 분석하여 광도곡선 해를 질량비 q=0.094, 궤도경사각 $i=85.^{\circ}4$, $T_1=6365(K)$, $T_2=6250(K)$, $R_1=1.132(Rsun)$, $R_2=1.304(Rsun)$와 같이 산출하였다. 식바깥에서 나타나는 파형 모양의 변화는 주성의 표면에 매우 큰 흑점으로 잘 설명되며, BVR 광도곡선에서 각전체 광도의 각 8.3%, 10.0%, 11.7%에 해당되는 제3 광도가 검출되었다. 이는 주기연구에서 제안된 제3천체의 존재 가능성을 더 공고히 한다.

  • PDF

BD Andromedae의 주기 변화와 광도곡선 분석

  • Song, Mi-Hwa;Kim, Cheon-Hwi;U, Su-Wan;Yun, Yo-Ra;Bae, Tae-Seok;Jo, Yeong;Jin, Hye-Jin;Han, Won-Yong;Choe, Yong-Jun;Mun, Hong-Gyu;Im, Hong-Seo
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.21.2-21.2
    • /
    • 2011
  • 2010년 11월 05일부터 11월 29일 중 총 12일간 진천 소재 충북대학교 천문대의 60cm 반사망원경과 ST-8 CCD 카메라를 이용하여 BD And의 BVR CCD 측광 관측을 수행하여 처음으로 BVR 광도 곡선을 완성하였다. 또한, 극심시각 결정을 위한 측광관측이 레몬산 천문대 1m 반사망원경과 충북대학교 천문대의 35cm 망원경으로 수행되었다. 우리의 관측과 SWASP 관측을 통하여 모두 31개의 극심시각을 새로이 결정하였다. 새로운 관측은 이 별의 공전주기가 이전까지 알려진 0.4629일이 아니라 그 두 배인 0.9258일이며, 기산점도 반주기 바뀌어야 함을 보여 준다. BD And의 광도요소를 Min I = HJD 2434962.8602 + 0.d9258054 E으로 새롭게 개정하였다. 이 광도요소로 작성한 우리의 BVR 광도곡선은 제1식과 제2식의 깊이가 거의 비슷하며, 식바깥 부분에 잘 발달된 파형 모양을 보인다. 이는 BD And가 짧은 주기의 RS CVn형 식쌍성임을 나타내는 것이다. 우리의 극심시각을 포함한 총 144개의 극심시각에 대한 (O-C)도를 작성한 결과, BD And의 공전주기가 규칙적으로 변화하는 것을 발견하였다. 이 변화를 보이지 않는 제3천체에 의한 광시간 효과로 가정하여, 궤도이심율이 0.78이며, 9.19년의 주기를 가진 광시간 궤도를 결정하였다.우리의 광도곡선을 2003년 Wilson-Devinney 쌍성 모형으로 분석하여 광도곡선 해를 질량비 q=1.1822, 궤도경사각 i=$86.^{\circ}16$, $T_1$=6358(K), $T_2$=6250(K), $r_1$=1.117(Rsun), $r_2$=1.321(Rsun)와 같이 산출하였다. 식바깥에서 나타나는 파형 모양의 변화는 주성의 표면에 매우 큰 흑점으로 잘 설명되며, BVR 광도곡선에서 각각 전체 광도의 각 6.4%, 8.1%, 9.9%에 해당되는 제3 광도가 검출되었다. 이는 주기연구에서 제안된 제3천체의 존재 가능성을 더 공고히 한다.

  • PDF

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

Technology Status and Improvement Direction of Special Theaters in Korea by Format (국내 특수상영관 포맷별 기술현황과 개선방향)

  • Jung, Hyun-Jin
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.73-87
    • /
    • 2021
  • Special theaters were created to provide a sense of immersion and spectacles due to differentiated screens, sound, seating facilities, and advanced services, and also expanded screens. The purpose of this study is to perform comparative analysis of the technical characteristics formats shown in special theaters(3D film, 4DX, IMAX, ScreenX, and VR) in order to identify and find ways to overcome the technological limitations in production. The various formats show differences in field of view depending on the exhibition technology and these differences affect the mise-en-scene, narrative, and editing of the film and consequently result in changes in the production environment and process. Therefore, directors and creators must understand the technological features and limitations of the new formats before making their approach. However, a new format encounters limitations on production sets due to the decline of technical education and succession. In situations where shooting with a special camera is essential, the particular characteristics of each format should be carefully considered from the planning stage but financial problems arise due to increase in production period and cost. To overcome these various obstacles, it is essential to first identify problems and present alternatives through in-depth research on the production set of each format. Finally, this research aims to explore the prototype of each format and analyze the current state of production technology with formats that have not been adapted to the market trends by combining with the other formats and showing that they can survive in new ways.

Different Uptake of Tc-99m ECD and Tc-99m HMPAO in the Normal Brains: Analysis by Statistical Parametric Mapping (정상 뇌 혈류 영상에서 방사성의약품에 따라 혈류 분포에 차이가 있는가: 통계적 파라미터 지도를 사용한 분석)

  • Kim, Euy-Neyng;Jung, Yong-An;Sohn, Hyung-Sun;Kim, Sung-Hoon;Yoo, Ie-Ryung;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.244-254
    • /
    • 2002
  • Purpose: This study investigated the differences between technetium-99m ethyl cysteinate dimer (Tc-99m ECD) and technetium-99m hexamethylpropylene amine oxime (Tc-99m HMPAO) uptake in the normal brain by means of statistical parametric mapping (SPM) analysis. Materials and Methods: We retrospectively analyzed age and sex matched 53 cases of normal brain SPECT. Thirty-two cases were obtained with Tc-99m ECD and 21 cases with Tc-99m HMPAO. There were no abnormal findings on brain MRIs. All of the SPECT images were spatially transformed to standard space, smoothed and globally normalized. The differences between the Tc-99m ECD and Tc-99m HMPAO SPECT images were statistically analyzed using statistical parametric mapping (SPM'99) software. The differences bgetween the two groups were considered significant ant a threshold of corrected P values less than 0.05. Results: SPM analysis revealed significantly different uptakes of Tc-99m ECD and Tc-99m HMPAO in the normal brains. On the Tc-99m ECD SPECT images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the basal ganglia and thalamus, and in the superior region of the cerebellum. On the Tc-99m HMPAO SPECT images, relatively higher uptakes was observed in subcortical areas of the frontal region, temporal lobe, and posterior portion of inferior cerebellum. Conclusion: Uptake of Tc-99m ECD and Tc-99m HMPO in the normallooking brain was significantly different on SPM analysis. The selective use of Tc-99m ECD of Tc-99m HMPAO in brain SPECT imaging appears especially valuable for the interpretation of cerebral perfusion. Further investigation is necessary to determine which tracer is more accurate for diagnosing different clinical conditions.