• Title/Summary/Keyword: 3D 가상환경

Search Result 594, Processing Time 0.027 seconds

Developing an Occupants Count Methodology in Buildings Using Virtual Lines of Interest in a Multi-Camera Network (다중 카메라 네트워크 가상의 관심선(Line of Interest)을 활용한 건물 내 재실자 인원 계수 방법론 개발)

  • Chun, Hwikyung;Park, Chanhyuk;Chi, Seokho;Roh, Myungil;Susilawati, Connie
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.667-674
    • /
    • 2023
  • In the event of a disaster occurring within a building, the prompt and efficient evacuation and rescue of occupants within the building becomes the foremost priority to minimize casualties. For the purpose of such rescue operations, it is essential to ascertain the distribution of individuals within the building. Nevertheless, there is a primary dependence on accounts provided by pertinent individuals like building proprietors or security staff, alongside fundamental data encompassing floor dimensions and maximum capacity. Consequently, accurate determination of the number of occupants within the building holds paramount significance in reducing uncertainties at the site and facilitating effective rescue activities during the golden hour. This research introduces a methodology employing computer vision algorithms to count the number of occupants within distinct building locations based on images captured by installed multiple CCTV cameras. The counting methodology consists of three stages: (1) establishing virtual Lines of Interest (LOI) for each camera to construct a multi-camera network environment, (2) detecting and tracking people within the monitoring area using deep learning, and (3) aggregating counts across the multi-camera network. The proposed methodology was validated through experiments conducted in a five-story building with the average accurary of 89.9% and the average MAE of 0.178 and RMSE of 0.339, and the advantages of using multiple cameras for occupant counting were explained. This paper showed the potential of the proposed methodology for more effective and timely disaster management through common surveillance systems by providing prompt occupancy information.

Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera (딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • As the distribution of 3D content such as augmented reality and virtual reality increases, the importance of real-time computer animation technology is increasing. However, the computer animation process consists mostly of manual or marker-attaching motion capture, which requires a very long time for experienced professionals to obtain realistic images. To solve these problems, animation production systems and algorithms based on deep learning model and sensors have recently emerged. Thus, in this paper, we study four methods of implementing natural human movement in deep learning model and kinect camera-based animation production systems. Each method is chosen considering its environmental characteristics and accuracy. The first method uses a Kinect camera. The second method uses a Kinect camera and a calibration algorithm. The third method uses deep learning model. The fourth method uses deep learning model and kinect. Experiments with the proposed method showed that the fourth method of deep learning model and using the Kinect simultaneously showed the best results compared to other methods.

Implementation of Uncertainty Processor for Tracking Vehicle Trajectory (차량 궤적 추적을 위한 불확실성 처리기 구현)

  • Kim, Jin-Suk;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1167-1176
    • /
    • 2004
  • Along the advent of Internet technology, the computing environment has been considerably changed in many application domains. Especially, a lot of researches for e-Logistics have been done for the last 3 years. The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. To construct effectively the e-Logistics framework, researches on the development of the Moving Object Technology(MOT) including GPS and GIS with spatiotemporal databases technique so far has been done The Moving Object Technology stands for the efficient management for the spatiotemporal objects such as vehicles, airplanes, and vessels which change continuously their spatial location along with time flows. However, most systems manage just only the location information detected lately by many reasons so that the uncertainty processing for the past and future location of the moving objects is still very hard. In this paper, we propose the moving object uncertainty model and system design for e-Logistics applications. The MOMS architecture in e-Logistics is suggested and the detailed explain of sub-systems including the uncertainty processor of moving objects is described. We also explain the comprehensive examples of MOMS and uncertainty processing in Delivery Parcel Application that is one of major application of e-Logistics domain.

An Educational Platform for Digital Media Prototype Development: an analysis and a usability study (디지털 미디어 콘텐츠 개발을 위한 교육용 플랫폼의 활용성)

  • Kim, Na-Young
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.77-87
    • /
    • 2011
  • The advent of new platforms each year along with the advancement of technology provides a new opportunity for digital media designers to develop creative and innovative contents. This phenomenon affect the same way the students that major in the digital media, and the use of the platforms that is based on the new technology in the development of contents gives a newer and useful opportunity for learning to the students who recently study the digital media area. As the main technology of the recent digital media that attract many students' attention, we are presenting virtual reality display, movement cognition, physical engine and the gesture interface, and developed the consolidated platform based on these four technologies, and designed them in a way that can be more easily implemented in a simpler way. In order to study the efficiency of the platform with the objective of the development of digital media contents, we have developed four different prototype contents, and have measured based on the user's preference, efficiency and satisfaction. In the results of usability evaluation, functionality, effectiveness, efficiency, satisfaction were rated as 'high'. This results shows that the suggested 3D platform environment provides students to develop a rapid prototype fast and easy, and this may have a positive influence on students major in the digital media to conduct creative development research.

A Study on the Photorealism of Digital Architectural Rendering Images (디지털 건축 렌더링 이미지의 포토리얼리즘에 대한 고찰)

  • Kim, Jong Konk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.238-246
    • /
    • 2018
  • The production of hyper-realistic digital rendering images has been available due to radical improvements of recent digital rendering and CGI (Computer-Generated Imagery) software technologies. The photorealism of digital architectural rendering images requires further studies and discussions in that architectural visualization becomes a foundation of other fields using digital rendering technology, such as movies, games, and VR industry. The principles for achieving photorealism on digital architectural rendering images were re-defined and detailed elements were analyzed through theoretical analysis of the former studies. Four principles were drawn from the architectural rendering images produced by newly-developed technologies: physically-accurate lighting calculations, accurate object geometry representation, realistic material and texture, and characteristics of photography. The sub-elements of those four principles are categorized into either essential or selective for photorealistic imagery and the randomness of the selective elements could explain the variety of photorealistic architectural rendering styles.

A Study on XR Handball Sports for Individuals with Developmental Disabilities

  • Byong-Kwon Lee;Sang-Hwa Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.31-38
    • /
    • 2024
  • This study proposes a novel approach to enhancing the social inclusion and participation of individuals with developmental disabilities. Utilizing cutting-edge virtual reality (VR) technology, we designed and developed a metaverse simulator that enables individuals with developmental disabilities to safely and conveniently experience indoor handicapped handball sports. This simulator provides an environment where individuals with disabilities can experience and practice handball matches. For the modeling and animation of handball players, we employed advanced modeling and motion capture technologies to accurately replicate the movements required in handball matches. Additionally, we ported various training programs, including basic drills, penalty throws, and target games, onto XR (Extended Reality) devices. Through this research, we have explored the development of immersive assistive tools that enable individuals with developmental disabilities to more easily participate in activities that may be challenging in real-life scenarios. This is anticipated to broaden the scope of social participation for individuals with developmental disabilities and enhance their overall quality of life.

A Feasibility Study for Decision-Making Support of a Radioactive Contamination Model in an Urban Environment (METRO-K) (도시환경 방사능오염 평가모델 METRO-K의 대응행위 결정지원을 위한 실용성 연구)

  • Hwang, Won-Tae;Han, Moon-Hee;Jeong, Hyo-Joon;Kim, Eun-Han;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • A Korean urban contamination model METRO-K (${\underline{M}}odel$ for ${\underline{E}}stimates$ the ${\underline{T}}ransient$ Behavior of ${\underline{R}}adi{\underline{O}}active$ Materials in the ${\underline{K}}orean$ Urban Environment, which is capable of calculating the exposure doses resulting from radioactive contamination in an urban environment, is taking part in a model testing program EMRAS (${\underline{E}}nvironmental$ ${\underline{M}}odelling$ for ${\underline{RA}}diation$ ${\underline{S}}afety$) oragnized by the IAEA (${\underline{I}}nternational$ ${\underline{A}}tomic$ ${\underline{E}}nergy$ ${\underline{A}}gency$). For radioactive contamination scenarios of Pripyat districts and a hypothetical RDD (${\underline{R}}adiological$ ${\underline{D}}ispersal$ ${\underline{D}}evice$), the predicted results using METRO-K were submitted to the EMRAS's Urban Contamination Working Group. In this paper, the predicted results for the contamination scenarios of a Pripyat district were shown in case of both without remediation measures and with ones. Comparing with the predictied results of the models that have taken part in EMRAS program, a feasibility for decision-making support of METRO-K was investigated. As a predicted result of METRO-K, to take immediately remediation measures following a radioactive contamination, if possible, might be one of the best ways to reduce exposure dose. It was found that the discrepancies of predicted results among the models are resulted from 1) modeling approaches and applied parameter values, 2) exposure pathways which are considered in models, 3) assumptions of assessor such as contamination surfaces which might affect to an exposure receptor and their sizes, 4) parameter values which are related with remediation measures applied through literature survey. It was indentified that a Korean urban contamination model METRO-K is a useful tool for dicision-making support through the participation of EMRAS program.

A Development of a Mixed-Reality (MR) Education and Training System based on user Environment for Job Training for Radiation Workers in the Nondestructive Industry (비파괴산업 분야 방사선작업종사자 직장교육을 위한 사용자 환경 기반 혼합현실(MR) 교육훈련 시스템 개발)

  • Park, Hyong-Hu;Shim, Jae-Goo;Park, Jeong-kyu;Son, Jeong-Bong;Kwon, Soon-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2021
  • This study was written to create educational content in non-destructive fields based on Mixed Reality. Currently, in the field of radiation, there is almost no content for educational Mixed Reality-based educational content. And in the field of non-destructive inspection, the working environment is poor, the number of employees is often 10 or less for each manufacturer, and the educational infrastructure is not built. There is no practical training, only practical training and safety education to convey information. To solve this, it was decided to develop non-destructive worker education content based on Mixed Reality. This content was developed based on Microsoft's HoloLens 2 HMD device. It is manufactured based on the resolution of 1280 ⁎ 720, and the resolution is different for each device, and the Side is created by aligning the Left, Right, Bottom, and TOP positions of Anchor, and the large image affects the size of Atlas. The large volume like the wallpaper and the upper part was made by replacing it with UITexture. For UI Widget Wizard, I made Label, Buttom, ScrollView, and Sprite. In this study, it is possible to provide workers with realistic educational content, enable self-directed education, and educate with 3D stereoscopic images based on reality to provide interesting and immersive education. Through the images provided in Mixed Reality, the learner can directly operate things through the interaction between the real world and the Virtual Reality, and the learner's learning efficiency can be improved. In addition, mixed reality education can play a major role in non-face-to-face learning content in the corona era, where time and place are not disturbed.

A Study on Pipe Model Registration for Augmented Reality Based O&M Environment Improving (증강현실 기반의 O&M 환경 개선을 위한 배관 모델 정합에 관한 연구)

  • Lee, Won-Hyuk;Lee, Kyung-Ho;Lee, Jae-Joon;Nam, Byeong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • As the shipbuilding and offshore plant industries grow larger and more complex, their maintenance and inspection systems become more important. Recently, maintenance and inspection systems based on augmented reality have been attracting much attention for improving worker's understanding of work and efficiency, but it is often difficult to work with because accurate matching between the augmented model and reality information is not. To solve this problem, marker based AR technology is used to attach a specific image to the model. However, the markers get damaged due to the characteristic of the shipbuilding and offshore plant industry, and the camera needs to be able to detect the entire marker clearly, and thus requires sufficient space to exist between the operator. In order to overcome the limitations of the existing AR system, in this study, a markerless AR was adopted to accurately recognize the actual model of the pipe system that occupies the most processes in the shipbuilding and offshore plant industries. The matching methodology. Through this system, it is expected that the twist phenomenon of the augmented model according to the attitude of the real worker and the limited environment can be improved.

Database Security System supporting Access Control for Various Sizes of Data Groups (다양한 크기의 데이터 그룹에 대한 접근 제어를 지원하는 데이터베이스 보안 시스템)

  • Jeong, Min-A;Kim, Jung-Ja;Won, Yong-Gwan;Bae, Suk-Chan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1149-1154
    • /
    • 2003
  • Due to various requirements for the user access control to large databases in the hospitals and the banks, database security has been emphasized. There are many security models for database systems using wide variety of policy-based access control methods. However, they are not functionally enough to meet the requirements for the complicated and various types of access control. In this paper, we propose a database security system that can individually control user access to data groups of various sites and is suitable for the situation where the user's access privilege to arbitrary data is changed frequently. Data group(s) in different sixes d is defined by the table name(s), attribute(s) and/or record key(s), and the access privilege is defined by security levels, roles and polices. The proposed system operates in two phases. The first phase is composed of a modified MAC (Mandatory Access Control) model and RBAC (Role-Based Access Control) model. A user can access any data that has lower or equal security levels, and that is accessible by the roles to which the user is assigned. All types of access mode are controlled in this phase. In the second phase, a modified DAC(Discretionary Access Control) model is applied to re-control the 'read' mode by filtering out the non-accessible data from the result obtained at the first phase. For this purpose, we also defined the user group s that can be characterized by security levels, roles or any partition of users. The policies represented in the form of Block(s, d, r) were also defined and used to control access to any data or data group(s) that is not permitted in 'read ' mode. With this proposed security system, more complicated 'read' access to various data sizes for individual users can be flexibly controlled, while other access mode can be controlled as usual. An implementation example for a database system that manages specimen and clinical information is presented.