• Title/Summary/Keyword: 3D 가상착의 시스템

Search Result 32, Processing Time 0.018 seconds

Adolescent Girls' Bodice Pattern Fit Using the 3-Dimensional Virtual Clothing System (3차원 가상 착의 시스템을 이용한 여자 청소년용 길 원형 맞음새 연구)

  • Kim, Dohkyung;Chun, Jongsuk
    • Human Ecology Research
    • /
    • v.54 no.3
    • /
    • pp.279-292
    • /
    • 2016
  • This research predicted the fit of the basic bodice patterns worn on adolescent girls' 3-dimensional scanned bodies. Six 3-dimensional scanned bodies were selected from the sixth Size Korea data. Each of them had good body posture and represented one of the three garment sizes: 79-160, 82-160, and 85-160. Experimental basic bodice patterns were drafted by three basic bodice pattern making methods. The fit of the basic bodice pattern was analyzed by the CLO 3D virtual clothing system. The results showed that the experimental basic bodice patterns did not fit well at the neck, shoulder, and back for adolescent girls. The fit of the basic bodice patterns varied by pattern making method or size. The basic bodice pattern A with the waist darts ending above the breast line showed the best fit among the three different types of experimental pattern. Among the three sizes 79-160, 82-160, and 85-120, size 79-160 basic bodice pattern showed the worst fit for adolescent girls. The results show that the placement and size of the bodice darts affect the basic bodice pattern fit. The basic bodice pattern making method of size 79-160 for adolescent girls should be studied in a future study.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF