• Title/Summary/Keyword: 3D (three dimensional) shape

Search Result 454, Processing Time 0.028 seconds

Simulation Based Production Using 3-D CAD in Shipbuilding

  • Okumoto, Yasuhisa;Hiyoku, Kentaro;Uesugi, Noritaka
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • The application of three-dimensional (3-D) CAD has been popularized for design and production and digital manufacturing has been spreading in many industrial fields. By simulation of the production process using 3-D digital models, which are the core of CIM (Computer Integrated Manufacturing) system, the efficiency and safety of production are improved at each stage of work, and optimization of manufacturing can be achieved. This paper firstly describes the concept of "simulation based production" in shipbuilding and also digital manufacturing; the 3-D CAD system is indispensable for effective simulation because ship structure is three dimensionally complex. By simulation, "computer optimized manufacturing" can be possible. The most effective fields of simulation in shipbuilding are in jobs where many parties have to cooperate, while existing two-dimensional drawings are hardly observed the whole structures due to interference between structures or equipment of complex shape. In this paper some examples of the successful application in IHIMU (IHI Marine United Inc.) are shown: assembly of a pipe unit, erection of a complex hull block, carriage of equipment, installation of a propeller, and access in an engine room.

A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction

  • Anh, Ji-won;Park, Ji-Man;Chun, Youn-Sic;Kim, Miae;Kim, Minji
    • The korean journal of orthodontics
    • /
    • v.46 no.1
    • /
    • pp.3-12
    • /
    • 2016
  • Objective: The purpose of this study was to compare the precision of three-dimensional (3D) images acquired using iTero$^{(R)}$(Align Technology Inc., San Jose, CA, USA) and Trios$^{(R)}$(3Shape Dental Systems, Copenhagen, Denmark) digital intraoral scanners, and to evaluate the effects of the severity of tooth irregularities and scanning sequence on precision. Methods: Dental arch models were fabricated with differing degrees of tooth irregularity and divided into 2 groups based on scanning sequence. To assess their precision, images were superimposed and an optimized superimposition algorithm was employed to measure any 3D deviation. The t-test, paired t-test, and one-way ANOVA were performed (p < 0.05) for statistical analysis. Results: The iTero$^{(R)}$ and Trios$^{(R)}$ systems showed no statistically significant difference in precision among models with differing degrees of tooth irregularity. However, there were statistically significant differences in the precision of the 2 scanners when the starting points of scanning were different. The iTero$^{(R)}$ scanner (mean deviation, $29.84{\pm}12.08{\mu}m$) proved to be less precise than the Trios$^{(R)}$ scanner ($22.17{\pm}4.47{\mu}m$). Conclusions: The precision of 3D images differed according to the degree of tooth irregularity, scanning sequence, and scanner type. However, from a clinical standpoint, both scanners were highly accurate regardless of the degree of tooth irregularity.

A Study of Methodology Developing Reconstructed body using Styrofoam Boards (스티로폼 보드를 이용한 연구용 재현바디 제작 방법 연구)

  • Choi, Young-Lim;Nam, Yun-Ja
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.713-720
    • /
    • 2008
  • The purpose of this study was to propose the method reproducing three dimensional figure data to a reconstructed body by the styrofoam board. To make the reconstructed body, the 3D figure data were rotated to make symmetry and the surfaces were edited. The horizontal curves were gathered equally-spaced based on the waist horizontal plane. we proposed the process to cut the styrofoam board according to the horizontal curves, to assemble them to organize the shape of the body figure and to coat the surface with the knitted. The 3-dimensional figure data of straight type, swayback type, lean-back type and bend-forward type were selected and the reconstructed bodies were made as above. And the compatibility was verified by the measurement comparison and deviations between 3-dimensional figure data and reconstructed body.

Three dimensional reconstruction and measurement of underwater spent fuel assemblies

  • Jianping Zhao;Shengbo He;Li Yang;Chang Feng;Guoqiang Wu;Gen Cai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3709-3715
    • /
    • 2023
  • It is an important work to measure the dimensions of underwater spent fuel assemblies in the nuclear power industry during the overhaul, to judging whether the spent fuel assemblies can continue to be used. In this paper, a three dimensional reconstruction method for underwater spent fuel assemblies of nuclear reactor based on linear structured light is proposed, and the topography and size measurement was carried out based on the reconstructed 3D model. Multiple linear structured light sensors are used to obtain contour size data, and the shape data of the whole spent fuel assembly can be collected by one-dimensional scanning motion. In this paper, we also presented a corrected model to correct the measurement error introduced by lead-glass and water is corrected. Then, we set up an underwater measurement system for spent fuel assembly based on this method. Finally, an underwater measurement experiment is carried out to verify the 3D reconstruction ability and measurement ability of the system, and the measurement error is less than ±0.05 mm.

Design Optimization of Flow Guide by an Approximation Approach in Three-dimensional Extrusion Processes (근사 최적화 기법을 이용한 3차원 압출공정에서 플로우 가이드 형상의 최적 설계)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.19-22
    • /
    • 2004
  • A scheme of shape optimization by new approximation approach is applied to design of a flow guide in three-dimensional extrusion processes. The optimization scheme is presented to reduce computation time fur the optimization process and applied to an H-section extrusion problem for verifying the efficiency and the usefulness. The object of optimization is to minimize the deviation of exit velocity and control points of a Bezier curve describing the shape of the flow guide are regarded as design variables. The effectiveness of the proposed scheme is then demonstrated through the applied example.

  • PDF

Minimization of Die Wear Rate by Using Multi-Objective Optimization in Three-Dimensional Extrusion Processes (3차원 압출 공정에서 다목적 최적화 기법을 이용한 금형 마모율의 최소화)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.262-265
    • /
    • 2005
  • A shape optimization of flow guide is accomplished to minimize the wear rate of die in three-dimensional flat-die extrusion processes. In order to achieve the balanced flow and the uniformed distribution of the effective strain during the extrusion, a multi-objective optimization is implemented. During the process of optimization formulation, the flow balance and the deviation of strain is considered as constrained conditions. The proposed approach is applied to an extrusion of H section. Through the optimization, it has been confirmed that the wear rate of die can be minimized satisfying the constraint.

  • PDF

A Study on the Characteristics of 3D Printing Jewelry Design Utilizing with Fractal Geometry (프랙탈 기하학을 적용한 프린팅 주얼리 디자인 3D 특성)

  • Choi, Kyunghee
    • Journal of Fashion Business
    • /
    • v.21 no.5
    • /
    • pp.136-150
    • /
    • 2017
  • 3D printing has grown tremendously as the most noteworthy new technology in the manufacturing industries. In addition, the rapid development of computer science technology with 3D printing has created a new paradigm called Fractal Geometry, or a new form of digital art. This study explores the formative characteristics of 3D printing jewelry based on presentation of fractal geometry by classification of 3D printing jewelry's morphological types that except for producible shape with traditional mold manufacturing methods. The results of the study are as follows. The morphological characteristics of 3D printed jewelry are divided into their constitutive shapes by the repetition of the unit. The organic shape determined by superposition or overlapping, the systematic shape by distortion caused by distortion, and the variation in scaling by scaling. The formative characteristics, which are drawn from a study on the shape expression of 3D printed jewelry design using fractal geometry, consist of continuity, geometrical characteristics, and exaggeration. Continuity creates a new and self-assigned new space through a recursive structure through a cyclic structure that is formed along a single directional basis. The geometry of the geometry forms a three-dimensional and constructive structure comprised of the same size and structure of the same sized unit under the mathematical order of the geometry of Fractal's geometry. Exaggeration demonstrates the informal beauty and the maximization of the shape by expanding the scaling or superposition of a unit, by scaling the scale or he distortion of the units.

Detection of Simulative Foreign Body Using three Dimensional Reconstruction Technique, Introduction and Application (삼차원 재건 기술을 이용한 모의 이물 탐색)

  • Yoo, Young Sam;Kim, Dong Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Background and Objectives Detailed information about the impacted esophageal foreign body is essential for safe extraction. Three dimensional reconstruction technique was applied to know shape, size and location of the simulative foreign bodies of stone, hyoid bone and endotracheal tube. Materials and Methods Submandibular gland stone, hyoid bone and endotracheal tube were used to simulate impacted foreign bodies. Axial CT, multi-planar reconstruction, volume of interest and virtual camera of Rapidia software were used to get information about the simulative foreign bodies from CT data. Shape and size were compared with the real materials. Exact locations were measured in appropriate modes of Rapidia. Results Shapes of the simulative foreign bodies matched well with the real materials. Size and location could be measured in various modes with some variable results. Conclusion 3D technique can be applied to get information about the simulative foreign bodies. This technique could be applied to the impacted esophageal foreign body.

  • PDF

Three Dimensional Last Data Generation System Utilizing Cross Sectional Free Form Deformation (단면 분할 FFD를 이용한 3D 라스트 데이터 생성시스템 개발)

  • Kim, Si-Kyung;Park, In-Duck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.768-773
    • /
    • 2005
  • A new approach for human foot modelling and last design based on the cross sectional method is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the foot 3D data and last 3D data. The cross section a surface of 3D foot for the 3D last, design modeling of free form geometric last shapes. The proposed last design scheme wraps the 3D last data surrounding the measured 3D foot data with the effect of deforming the last design rule The last design rule of the FFD is constructed on the FFD lattice based on foot-last shape analysis. In addition, the control points of FFD lattice are constructed with cross sectional data interpolation methods from the a finite set of 3D foot data. The deformed 3D last result obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the last designed with the proposed scheme has good performance.

Measurements of 3D Model Shapes for Reverse Designs (역설계를 위한 3차원 모델형상 측정)

  • Doh, Deog-Hee;Cho, Kyeong-Rae;Cho, Yong-Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Reverse Design(RD) plays an important role in simulation engineering, such as CFD (Computational Fluid Dynamics) and Virtual Engineering and Design. RD becomes much more valuable when there is no shape data of the practical models for CFD grid generations. In this study, two-camera based rapid prototyping(RP) system is proposed. 3D-PTV based measurement algorithm was adopted. The developed system was applied to reconstruct three-dimensional data of a human face, a motorcycle model, a cylindrical body and a triangular pyramid.