• Title/Summary/Keyword: 3D프린팅 윤활

Search Result 2, Processing Time 0.019 seconds

Investigation of the Internal Stress Relaxation in FDM 3D Printing : vegetable lubricating oil (FDM 3D프린팅 윤활유에 따른 내부응력 완화에 관한 연구)

  • Lee, Sun Kon;Kim, Yong Rae;Kim, Su Hyun;Kang, Sun Ho;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.82-90
    • /
    • 2019
  • In this paper, the effects of different 3D printing conditions including oil lubrication and annealing are observed for their effects on tensile testing. In 3D printing, a press-out extrude filament is rapidly heated and cooled to create internal stress in the printed part. The 3D printing internal stress can be removed using oil-coated filament and annealing. During the oven cooling at an annealing temperature of $106^{\circ}C$, the stress of the specimens with laminated angle $0^{\circ}$ tends to increase by 12.6%, and that of the oil-coated filament printing specimens is increased by 17%. At the annealing temperature of $106^{\circ}C$, the stress of the oil-coated filament printing specimens tends to increase by 35%. In this study, we have found that the oil lubrication and annealing remove the internal stresses and increase the strength of the printed specimens. The oil lubrication and annealing reform the crystalline structures to even out the areas of high and low stress, which creates fewer fragile areas. These results are very useful for the manufacture of 3D printing products with a suitable mechanical strength for applications.

Molecular Simulation Study on Influence of Water Film Thickness on Lubrication Characteristics (물 분자막의 두께와 윤활특성의 상관관계에 대한 분자시뮬레이션 연구)

  • Kim, Hyun-Joon;Heo, Segon
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.199-204
    • /
    • 2022
  • This paper presents a numerical investigation of the influence of water molecule thickness on frictional behavior at the nanoscale using molecular dynamics simulation. Three different models, comprising water thin films of various thicknesses, were built, and indentation and sliding simulations were performed using the models. Various normal loads were applied by indenting the Si tip on the water film for the sliding simulation to evaluate the interplay between the water thin film thickness and the normal load. The results of the simulations showed that the friction force generally increased with respect to the normal load and thickness of the water thin film. The friction coefficient varied with respect to the normal load and the water film thickness. The friction coefficient was the smallest under a moderate normal force and increased with decreasing or increasing normal loads. As the water film became thicker, the contact area between the tip and water film became larger. Under well-lubricated conditions, the friction force was proportional to the contact area regardless of the water film thickness. As the normal force increased above a critical condition, the water molecules beneath the Si tip spread out; thus, the film could not provide lubrication. Consequently, the substrate was permanently deformed by direct contact with the Si tip, while the friction force and friction coefficient significantly increased. The results suggest that a thin water film can effectively reduce friction under relatively low normal load and contact pressure conditions. In addition, the contact area between the contacting surfaces dominates the friction force.