• Title/Summary/Keyword: 3D이미징

Search Result 34, Processing Time 0.286 seconds

A Study on the Usefulness of Copper Filter in Single X-ray Whole Spine Lateral using 3D Printer (단일조사 whole spine Lateral 검사에서 3D 프린터로 제작한 구리 필터 유용성 연구)

  • Kwon, Kyung-Tae;Yoon, Dayeon;Shin, Rae-Un;Han, Bong-Ju;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.899-906
    • /
    • 2020
  • The WSS lateral examination is important for diagnosing spinal disorders. Recently, long-length detectors for large-area diagnose have been popularized to effectively reduce the exposure dose and examination time. It can be applied very efficiently to examinations of patients with high risk of falls, children, and adolescents. However, since the image is acquired through a single irradiation, the volume of cervical vertebra is relatively smaller than the lumbar due to the geometrical anatomy of the spine. Therefore, this study intends to fabricate an additional filter using 3D printing technology and copper filament to obtain uniform image quality in the WSS lateral examination and to analyze the results. 3D printing technology is able to easily print a desired shape, so it is widely used in the entire industrial field, and recently, a copper filament has been developed to confirm the possibility as an additional filter. In the WSS lateral examination, CNR and SNR were excellently measured when the additional filter was applied, confirming the possibility of using the additional filter.

Swimming behavior monitoring of Pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage using the imaging sonar (이미징 소나를 이용한 외해가두리 내 참다랑어의 유영 행동 모니터링)

  • Bo-Kyu HWANG;Myounghee KANG;Min-Son KIM
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.125-134
    • /
    • 2023
  • The swimming behavior of pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage of the brass fishing net was observed and analyzed by imaging sonar techniques. The cultured fish spent most of the time swimming a circular path along the circular cage wall and continued to swim only clockwise direction without completely changing the swimming direction during the 23-hour observation time. In addition, changed swimming behaviors were divided into four categories: (a) the behavior of a large group temporarily swimming in the opposite (counter clockwise) direction, (b) the behavior of a small group temporarily swimming in a small circular path, (c) the behavior swimming small circular path in the center of the cage, and (d) the behavior of a large group swimming across the center of the cage. The maximum swimming speed of the cultured fish was from 3.5 to 3.8 TL/s, the mode was from 1.2 to 1.4 TL/s and the swimming speed during the day time was faster than at night time. It was confirmed the cultured fish swam not only on the surface but also near the bottom net of the cage during the day, but swam mainly at the upper part of the cage at night.

Effective Volume Rendering and Virtual Staining Framework for Visualizing 3D Cell Image Data (3차원 세포 영상 데이터의 효과적인 볼륨 렌더링 및 가상 염색 프레임워크)

  • Kim, Taeho;Park, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, we introduce a visualization framework for cell image data obtained from optical diffraction tomography (ODT), including a method for representing cell morphology in 3D virtual environment and a color mapping protocol. Unlike commonly known volume data sets, such as CT images of human organ or industrial machinery, that have solid structural information, the cell image data have rather vague information with much morphological variations on the boundaries. Therefore, it is difficult to come up with consistent representation of cell structure for visualization results. To obtain desired visual representation of cellular structures, we propose an interactive visualization technique for the ODT data. In visualization of 3D shape of the cell, we adopt a volume rendering technique which is generally applied to volume data visualization and improve the quality of volume rendering result by using empty space jittering method. Furthermore, we provide a layer-based independent rendering method for multiple transfer functions to represent two or more cellular structures in unified render window. In the experiment, we examined effectiveness of proposed method by visualizing various type of the cell obtained from the microscope which can capture ODT image and fluorescence image together.

Evaluation of Freezing Patterns for Sand and Clay by Using X-ray CT (X-ray CT를 통한 사질토와 점성토의 간극수 동결 패턴 분석)

  • Song, Jun Young;Lee, Jangguen;Lee, Seong-Won;Lee, Junhwan;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.57-65
    • /
    • 2018
  • This study adopts high resolution 3D X-ray CT imaging technique to visualize and evaluate the internal structure of experimentally frozen soils. Temperature and elastic wave velocity are also measured during the freezing process. The X-ray images of frozen specimens reveal that no changes in internal structure are observed for sand specimen, whereas systematic growth pattern of pore ice is observed within clay specimen. The freezing patterns are then quantified by a set of X-ray images with the aid of two-point correlation method by computing characteristic length Lr. The results reveal that characteristic length for pore ice freezing pattern in clay linearly increases with respect to the distance from the cooling source, so that Lr at the bottom layer is 2.5 times greater than the top layer when freezing process is completed. Furthermore, during the freezing process, local temperature differences are not observed in sand, but observed in clay specimen due to its relatively low thermal conductivity.