• 제목/요약/키워드: 316 Stainless Steel

검색결과 458건 처리시간 0.029초

고분자 전해질 연료전지에 적용하기 위한 크롬 도급 AISI 316L 스테인리스강의 펄스 바이어스 유도결합 플라즈마 질화 (Pulsed Bias Inductively Coupled Plasma Nitriding of Chromium Electroplated AISI 316L Stainless Steel for PEMFC Application)

  • 김민우;한동훈;홍원혁;이정중
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.145-146
    • /
    • 2009
  • 크롬 도금된 AISI 316L 스테인리스강에 펄스 바이어스를 사용한 유도결합 플라즈마로 질화 처리하여 고분자 전해질 연료전지용 분리판에 적합한 물성을 확인하였다.

  • PDF

고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착 (Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates)

  • 윤영훈;정훈택;차인수;최정식;김동묵;정진호
    • 한국세라믹학회지
    • /
    • 제45권8호
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

그래핀이 코팅된 스테인리스강의 고분자전해질 연료전지 분리판 적용을 위한 표면 특성 (Surface Characteristic of Graphene Coated Stainless Steel for PEMFC Bipolar Plate)

  • 이수형;김정수;강남현;조형호;남대근
    • 한국표면공학회지
    • /
    • 제44권5호
    • /
    • pp.226-231
    • /
    • 2011
  • Graphene was coated on STS 316L by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite (graphene) was made of the graphite by chemical treatment. Graphene is distributed using dispersing agent, and STS 316L was coated with diffuse graphene solution by electro spray coating method. The structure of the exfoliated graphite was analyzed using XRD and the coating layer of surface was analyzed by using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed into fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3~5 ${\mu}m$ thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the PEM fuel cell stack inside. And interfacial contact resistance test was measured to simulate the internal operating conditions of PEM fuel cell stack. The results of measurements show that stainless steel coated with graphene was improved in corrosion resistance and surface contact resistance than stainless steel without graphene coating layer.

3.5% NaCl 수용액 중에서의 금속과 GECM의 갈바닉 부식에 미치는 면적비의 영향 (Effect of Area Ratio on Galvanic Corrosion Between Metallic Materials and GECM in 3.5% NaCl Solution)

  • 김영식;임현권;손영일;유영란;장현영
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.39-47
    • /
    • 2010
  • Galvanic coupling between GECM(graphite epoxy composite material) and metallic materials can facilitate corrosion of metals and alloys because GECM is noble and electrically conductive. Galvanic corrosion is affected by many factors including metallic materials, area ratio, surface condition, and corrosivity. This work aims to evaluate the effect of area ratio on galvanic corrosion between GECM and several metals. In the case of glavanic coupling of carbon steel and Al to GECM, corrosion rate increased with increasing area ratio. Corrosion rate of sensitized STS 316S stainless steel decreased a little at an area ratio 1:1 but increased at an area ratio 30:1. It is considered to be due to that area ratio affects galvanic corrosion more in less corrosion resistant alloys. However, in case of STS 316 and Ti, galvanic coupling reduces corrosion rate by the formation of passive film.

Filler metal을 이용한 Stainless steel필터의 제조 및 통기도 (Fabrication and Permeability of Stainless Steel Filter by using Filler Metal)

  • 배승열;안인섭;성택경;최주호
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.288-293
    • /
    • 2004
  • The application concept of using a fail safety filter on the filtering system is to prevent the particle leakage when the main filter element is broken at high temperature. In this study, the metal filters were fabricated by pressureless sintering method. The mixture of stainless steel powders and filler metal binder solved in the water solutions of 5% PVA was compacted to form the cylindrical filter without pressure. The compacted filter were sintered in the vacuum sintering furnace at 120$0^{\circ}C$ for 1 hour. The metal filter(produced with powder of 640-840 ${\mu}m$ size) having more than above 50% porosity, 500${\mu}m$ pore size, and permeability of 7.3${\times}$10$^{-11}$m$^{2}$ plugged within 2.5 minute to prevent the leakage of maximum slip particle size of less than 3${\mu}m$.

Gas 이송용 Utility Materials의 전해연마 특성에 관한 연구 (A Study on the Characteristics of Electro-Polishing and Utility Materials for Gas Transitting)

  • 안세원;이종형;박무수
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.52-57
    • /
    • 2004
  • Many kinds of gases, such as erosion gas, dilution gas, and toxic gas have been used in manufacturing process of LCD at semiconductor. In order to increase accumulation rate of manufacturing process, high degree of purity in these gases and minimized metalllic dust are required. All wetted stainless steel surface must be 316L electro-polished with $0254{\mu}m$ in average. Based on the AES analysis, Cr/Fe 11 and $Cr_2O_3$ thickness $25{\AA}$ are measured Molybdenum and silicon contaminants which is characteristic of stainless steel and oxygen were found on the surface.

  • PDF

Electrochemical Investigation of Inhibitory of New Synthesized 3-(4-Iodophenyl)-2-Imino-2,3-Dihydrobenzo[d]Oxazol-5-yl 4-Methylbenzenesulfonate on Corrosion of Stainless Steel in Acidic Medium

  • Ehsani, Ali;Moshrefi, Reza;Ahmadi, Maliheh
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권1호
    • /
    • pp.7-15
    • /
    • 2015
  • 3-(4-Iodophenyl)-2-imino-2,3-dihydrobenzo[d]oxazol-5-yl 4-methylbenzenesulfonate (4-IPhOXTs) was synthesized and its inhibiting action on the corrosion of stainless steel 316L (SS) in sulfuric acid was investigated by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of the investigation show that this compound has excellent inhibiting properties for SS corrosion in sulfuric acid. Inhibition efficiency increases with increase in the concentration of the inhibitor. The adsorption of 4-IPhOXTs onto the SS surface followed the Langmuir adsorption model with the free energy of adsorption ΔG0ads of −8.45 kJ mol−1 . Quantum chemical calculations were employed to give further insight into the mechanism of inhibition action of 4-IPhOXTs.

ECR-MOCVD를 이용하여 연료 전지 분리판에 코팅된 FTO막의 특성 연구 (Characteristics of Fluorine-Doped Tin Oxide Film Coated on SUS 316 Bipolar Plates for PEMFCs)

  • 박지훈;;전법주;변동진;이중기
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.283-291
    • /
    • 2011
  • Polymer electrolyte membrane fuel cells (PEMFCs) use the bipolar plate of various materials between electrolyte and contact electrode for the stable hydrogen ion exchange activation. The bipolar plate of various materials has representatively graphite and stainless steel. Specially, stainless steels have advantage for low cost and high product rate. In this study, SUS 316 was effectively coated with 600 nm thick F-doped tin oxide (SnOx:F) by electron cyclotron resonance-metal organic chemical vapor deposition and investigated in simulated fuel cell bipolar plates. The results showed that an F-doped tin oxide (SnOx:F) coating enhanced the corrosion resistance of the alloys in fuel cell bipolar plates, though the substrate steel has a significant influence on the behavior of the coating. Coating SUS 316 for fuel cell bipolar plates steel further improved the already excellent corrosion resistance of this material. After coating, the increased ICR values of the coated steels compared to those of the fresh steels. The SnOx:F coating seems to add an additional resistance to the native air-formed film on these stainless steels.

TiN이 코팅된 316 스테인리스강 분리판을 이용한 1 kW 급 고분자전해질 연료전지 스택의 운전특성 (Performance of a 1 kW PEMFC Stack Using the TiN-Coated 316 Stainless Steel Bipolar Piates)

  • 전의식;조은애;하흥용;홍성안;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.39-45
    • /
    • 2004
  • A 12-cell PEMFC stack was fabricated using the TiN-coated 316 stainless steel bipolar plates as substitute for the expensive and brittle graphite bipolar plates. Open cirtuit voltage and the maximum power of the stack was 12.08 V and 1.197 kW (199.5 A @ 6 V), respectively. Volumetric and gravimetric power density of the stack was calculated to be 373 W/L and 168 W/kg, respectively. Performance of each cell was quite uniform initially while degraded at a singnificantly different rate. During the 1,000 hr-operation at a constant load of 48 A, stack voltage decreased from 9.0 to 7.98 V at a degradation rate of 11 %/1,000 hr. However, degradation rate of each cell was in the wide rage from 1.2 to 31 %/1,000 hr.

316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향 (The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel)

  • 이인섭
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.