• 제목/요약/키워드: 316 Stainless Steel

검색결과 458건 처리시간 0.022초

국부 감육과 균열이 발생한 TP316 스테인리스강 배관의 파괴거동에 관한 실험적 연구 (An Experimental Study on Failure Behavior of TP316 Stainless Steel Pipe with Local Wall Thinning and Cracking)

  • 정진환;김인태;최석진;최형석;김희성
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.647-657
    • /
    • 2012
  • 원자력 배관 시스템은 엄격한 설계기준에 따라 제작 되었음에도 불구하고, 장기 사용에 따라 발생하는 감육 및 균열에 의한 파손 사례가 보고되고 있다. 이에 본 연구에서는 스테인리스강 배관 시험체의 단조하중 및 반복하중 재하실험을 실시하여 국부 감육과 균열의 손상유무 및 0%, 35%, 75%의 손상정도가 배관의 파괴거동에 미치는 영향을 실험적으로 검토하였다. 본 실험에서는 실제 원자력 발전소에서 사용되고 있는 직경 3인치 TP316 스테인리스강 엘보우와 직관 배관을 대상으로 하여, 인위적으로 곡관부와 용접부에 0%, 35%, 75%의 국부적인 감육과 균열을 도입하고 20MPa의 내압을 가한 후 재하실험을 실시하였다. 그 결과, 국부 감육 및 균열의 손상정도가 파괴모드, 최대하중, 반복회수 및 에너지흡수율에 미치는 영향을 정량적으로 평가하였다. 그리고 휨 모멘트를 이용하여 ASME의 결함 허용기준을 평가하였다.

오스테나이트계 스테인리스강 레이저 용접부의 응고균열 거동 (Part 2) - δ 페라이트 정출 및 응고편석 거동에 따른 응고균열 민감도 변화 - (Solidification Cracking Behavior in Austenitic Stainless Steel Laser Welds (Part 2) -Effects of δ-ferrite Crystallization and Solidification Segregation Behavior on Solidification Cracking Susceptibility-)

  • 천은준;이수진;서정;강남현
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.61-69
    • /
    • 2016
  • A numerical simulation of the solid/liquid coexistence temperature range, using solidification segregation model linked with the Kurz-Giovanola-Trivedi model, explained the mechanism of the BTR shrinkage (with an increase in welding speed) in type 310 stainless steel welds by reduction of the solid/liquid coexistence temperature range of the weld metal due to the inhibited solidification segregation of solute elements and promoted dendrite tip supercooling attributed to rapid solidification of laser beam welding. The reason why the BTR enlarged in type 316 series stainless welds could be clarified by the enhanced solidification segregation of impurity elements (S and P), corresponding to the decrement in ${\delta}-ferrite$ crystallization amount at the solidification completion stage in the laser welds. Furthermore, the greater increase in BTR with type 316-B steel was determined to be due to a larger decrease in ${\delta}-ferrite$ amount during welding solidification than with type 316-A steel. This, in turn, greatly increases the segregation of impurities, which is responsible for the greater temperature range of solid/liquid coexistence when using type 316-B steel.

AISI 316L 클래드강의 맞대기 용접부 입계부식과 예민화 거동에 관한 연구 (The Sensitization and Intergranular Corrosion Behavior of AISI 316L Clad Steel with Butt Welding)

  • 이철구;박재원
    • Journal of Welding and Joining
    • /
    • 제31권2호
    • /
    • pp.49-56
    • /
    • 2013
  • We have investigated traits of clad metals in hot-rolled clad steel plates, sensitization and mechanical properties of STS 316 steel plate and carbon steel(A516). Clad steel plates were butt-weld by SAW+SMAW, and with the time of heat treatment as the variable, heat treatment was conducted at $625^{\circ}C$, for 80, 160, 320, 640, 1280 minutes. As a way to evaluate it, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by mechanical property, etching and those of EPR test, results were compared with it. In short, the purpose of this study is suggesting some considerations in developing on-site techniques to evaluate the sensitization of stainless steels.

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong;Bo Yang;Cuiqiang Shi;Xinjie Huang;George Vasdravellis;Quang-Viet Vu;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.281-298
    • /
    • 2024
  • Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

스테인레스강 316L의 다양한 온도에서 폴리우레탄-에폭시 복합코팅 특성에 관한 연구 (A Study on Properties of Polyurethane-Epoxy Hybrid Coatings on Stainless Steel 316L at Various Temperatures)

  • 성완모;김기준;김주한;성민정
    • 한국응용과학기술학회지
    • /
    • 제36권4호
    • /
    • pp.1358-1364
    • /
    • 2019
  • 스테인레스 스틸에 대한 합성된 폴리우레탄-에폭시 수지의 기계적 특성은 SEM, FT-IR, 인장특성, 그리고 EIS에 의한 특정질량손실량, 입도분석 등에 의해 물성을 측정하였다. 친환경적인 중방식 도료에 관한 관심이 고조됨에 따라 스테인레스 등의 금속에 코팅하는 무용제 도료를 합성하였다. 폴리올, IPDI, 충진제, 실리콘 계면활성제, 촉매 등이 함유된 기존 중방식수지보다 폴리올, MDI, 충진제, 실리콘 계면활성제, 촉매가 함유되어 합성된 중방식수지의 도료가 온도변화에 따른 인장강도가 증가하였고, 전해성이 높은 용액 속에서 저헝력이 크게 측정되었으며, 내구력과 강도가 양호하였다. 견고한 중방식수지의 기계적 특성은 가교와 부식환경의 차단력이 증가함에 따라 강도가 증가하였다. 결론적으로 중방식의 가교된 미세조직은 방청코팅이 어려운 스테인레스 스틸 같은 금속물질 코팅에도 좋은 실험결과를 보여주었다.

The Study of Corrosion Behavior of Active Screen Plasma Nitrided Stainless Steels

  • Chiu, L.H.;Chang, C.A.;Yeh, S.H.;Chen, F.S.;Chang, Heng
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.251-256
    • /
    • 2007
  • Plasma nitriding is a surface treatment process which is increasingly used to improve wear, fatigue and corrosion resistance of industrial parts. Active screen plasma nitriding (ASPN) has both the advantages of the classic cold wall and the hot wall conventional dc plasma nitriding (DCPN) method and the parts to be nitrided are no longer directly exposed to the plasma. In this study, AS plasma nitriding has been used to nitride the UNS S31803 duplex stainless steel, AISI 304 and AISI 316 austenitic stainless steel, and AISI 420 martensitic stainless steel. Treated specimenswere characterized by means of microstructural analysis, microhardness measurements and electrochemical tests in NaCl aerated solutions. Hardness of the nitride cases of AISI 420 stainless steel by Knoop test can get up to 1300 HK0.1. From polarization tests, the corrosion current densities of AISI 420 and UNS S31803specimens ASPN at $420^{\circ}C$ were generally lower than those of their untreated substrates. The corrosion resistance of UNS S31803 duplex stainless steel can be enhanced by plasma nitriding at $420^{\circ}C$ Cowing to the formation of the S-phase.

냉간가공된 TP304 스테인리스강 모재와 용접재를 이용한 반복 변형 및 손상 거동에 미치는 중성자조사 영향 모사 (Simulating Nuetron Irradiation Effect on Cyclic Deformation and Failure Behaviors using Cold-worked TP304 Stainless Steel Base and Weld Metals)

  • 김상언;김진원
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.58-67
    • /
    • 2020
  • This study presents cyclic stress-strain and tensile test results at room temperature (RT) and 316℃ using cold-worked TP304 stainless steel base and weld metals. By comparing the cyclic hardening/softening behavior and failure cycle of cold-worked materials with those of irradiated austenitic stainless steels, the feasibility of simulating the irradiation effect on cyclic deformation and failure behaviors of TP304 stainless steel base and weld metals was investigated. It was found that, in the absence of strain-induced martensite trasformation, cold-working could properly simulate the change in cyclic hardening/softening behavior of TP304 stainless steel base and weld metals due to neutron irradiation. It was also recognized that cold-working could adequately simulate the reduction in failure cycles of TP304 stainless steel base and weld metals due to neutron irradition in the low-cycle fatigue region.

태양전지 전력을 이용한 316L강의 전해연마 폐액 중 중금속 성분의 회수 (Recovery of Heavy-Metallic Components from a Waste Electro-polishing Solution of 316L Steel by the Solar Cell Electricity)

  • 김기호;장정목
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.53-57
    • /
    • 2009
  • Recovery of heavy-metallic component from a waste solution of factory was undertaken by the solar cell electricity. The solution was obtained from an electrolytic etching process of 316L stainless steel. The electrolysis of the solution for recovery of heavy metallic components was made with platinum plated titanium mesh anode and copper plate cathode. Analysis for the solution and electro-winned materials were made by EDS, XRD and SEM. Iron, chromium, and sulfur components were recovered on the cathode from the solution. Result of EDS analysis for the electro-winned materials revealed that some metal oxide were contained in the recovered material. The recovered materials were expected to have metallic form only by the electrolysis, but metal compounds were contained because of weak solar cell power. Nickel and manganese component in the solution doesn't recovered by this electrolysis process, but they made a sludge with phosphoric acid in the solution.

Ultrasonic Evaluation of Creep Damage in 316LN Stainless Steel

  • Yin, Song-Nan;Hwang, Yeong-Tak;Yi, Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.33-37
    • /
    • 2007
  • Creep failure of 316LN stainless steel (SS) occurs due to the nucleation and growth of cracks. An investigation was performed to correlate the creep damage with ultrasonic wave speeds and angular frequencies using creep-tested 316LN SS specimens. Ultrasonic wave measurements were made in the direction of and perpendicular to the loading using contact probes with central frequencies of 10, 15, and 20 MHz. We found that the angular frequency and wave speed decreased with increasing creep time to rupture by analyzing the ultrasonic signals from the 15 and 20 MHz probes. Therefore, the creep damage was sensitive to the angular frequency and wave speed of ultrasonic waves.

생체용 316LVM 스테인레스강 개발에 관한 연구 (Study on the 316LVM Stainless Steel for Surgical Implant Materials)

  • 신명철;이규환;이한구
    • 대한의용생체공학회:의공학회지
    • /
    • 제3권2호
    • /
    • pp.71-82
    • /
    • 1982
  • The 316LVM stainless steel that is widely used in surgical implant has been studied. The objective of this study is to develop the domestic production of the surgical implant materials. In the work, the metalllirgical phenomena, physical and chemical properties and biocompatibility of the materials are investigated. According to the experimental observation, corrosion resistance is strongly depended on the -ferrite structure and passive film, and mechanical properties are mainly depended on the cold reduction ratio. The -ferrite structure is minimized in the 16.651 Cr and 14%Ni contents, and yield strength is 104 kg/mm$^2$ at 45% cold reduction. Biocompatibility is excellent in the mouse body test for six weeks.

  • PDF