• Title/Summary/Keyword: 304 Stainless steel

Search Result 583, Processing Time 0.027 seconds

A Study on the Practical Cathodic Protection Design for the FRP Fishing Boat and It’s Application Scheme (FRP 어선 2종 스테인리스강 축의 음극방식을 위한 실용설계 및 적용방안 연구)

  • Gang, Dae-Seon;Kim, Gi-Jun;Lee, Myeong-Hun;Park, Jeong-Dae;Kim, Tae-Eon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.21
    • /
    • pp.66-77
    • /
    • 2006
  • Stainless steel has been stably used closed by passivity oxidation films(Cr₂O₃) is made by neutral atmospheric environment. However, passivity oxidaton films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having galogen ion like Cl‾, then, localization corrosion comes to occur Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc., According to the comparison and analysis of Stainless steel 304 was severely corroded, but, protected shaft specimen was not totallay corroded. This result is assumed to be made by the facts that anodic reaction, Fe → fe²++ 2e¯, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

Effect of Mo and Cu Contents on Work Hardening of Cold Drawn Stainless Steel 304H Wires for Spring (스프링용 스테인레스강 304H 신선재의 가공경화에 미치는 Mo와 Cu 농도의 영향)

  • Kim S. W.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.632-638
    • /
    • 2005
  • To investigate the effect of Mo and Cu contents on tensile strength of cold drawn stainless steel 304H wires, metallographical and mechanical tests were performed for the wire specimens drawn to different drawing strains at room temperature. It was confirmed that the contents of Mo ana Cu have little influence on the tensile strength of drawn specimens, even though the strain induced martensite transformation decreased with increasing the contents of Mo and Cu. These results were explained by the strengthening of the formed martensite itself due to the solid solution effect of interstitial solutes, carbon and nitrogen. The contents of these elements were slightly higher in the specimens containing additionally added Mo and Cu.

A Study on the Cleaning of AISI 304 Stainless Steel Surface for Gold Plating (금도금을 위한 AISI 304 스테인레스강 표면의 세정)

  • 한범석;장현구
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.23-33
    • /
    • 1995
  • AISI 304 stainless steel has high resistance to corrosion due to the presence of a self-healing chromium oxide film on the surface, which also accounts for the difficulty in plating. Surface cleaning of this alloy is of fundamental importance in gold plating since its effectiveness puts an upper limit on the quality of the final coating. The cleaning of AISI 304 stainless steel was investigated with elimination of artificial passive oxide film and degreasing of remaining buffing wax as stearic acid. The familiar cleaning methods i.e. ultrasonic cleaning, electro-cleaning and activation treatment were fabricated in this study. Activation treatment showed best cleaning efficiency for elimination of passive oxide film among these methods, which was also confirmed by AES (Auger electron spectrometer) analysis. However, the best condition of cleaning was obtained by combining these methods. Electrocleaning time, for degreasing the stearic acid layer, was decreased with increasing amount of added KCN.

  • PDF

Finite Element Analysis of Effect of Preheating on the Residual Stress in 304 Stainless Steel Weldment (304 스테인레스강 용접부 잔류응력에 미치는 예열 효과의 유한요속 해석)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.67-75
    • /
    • 1998
  • This study aimed at he experimental and finite element analytic investigation of the effect of preheating on he residual stress of weldment. In this study, an autogenous arc welding was used on type 304 stainless steel and MARC as F.E.M. common code was utilized in analysis The analyses include transient and moving heat source and thermal properties as function of temperature. During welding, the thermal cycles of four locations in the weldment were recorded to investigate of the behavior of thermal stress and residual stress. The experimental and analytic results had good coincidence and show that there are two factors influencing the formation of welding residual stress in preheat process. One is the elevation of welding equilibrium temperature and the other is the increase of amount of heat input. The former decrease welding residual stress and the latter increase welding residual stress. Therefore, the cumulative effects result in the welding residual stress not being improved significantly with preheating in 304 stainless steel.

  • PDF

Evaluation of Fracture Toughness($J_{IC}$) on 304 Stainless Steel Weldments Artificially Degraded under SCC Environment (SCC 분위기 하에서 장시간 인공열화된 304 스테인리스강 용접부의 파괴인성($J_{IC}$)평가)

  • 김성우;배동호;조선영;김철한
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.76-83
    • /
    • 1999
  • Fracture toughness({TEX}$J_{IC}${/TEX}) on 304 austenitic stainless steel weldments artificially degraded for long period under SCC environments were evaluated to investigate its reliability and environmental characteristics. Electro-chemical polarization tests were previously carried out to evaluate corrosion susceptiblility of weldment, and stress corrosion cracking was tested under various conditions of 3.5wt.% NaCl solution, the temperature of $25^{\circ}$C and $95^{\circ}$C, and oxygen concentration during 3000hours. From the results obtained, it was found that 304 stainless steel weldment was so susceptible under high temperature and high oxygen concentration of 3.5wt.% NaCl solution, and fracture toughness({TEX}$J_{IC}${/TEX}) was also considerably reduced by material degradation.

  • PDF

Oxidation of STS304 Stainless Steel between 1050 and 1200℃ for 1 Hour in Air (STS 304 스테인리스강의 대기중 1050~1200℃, 1시간 동안의 산화)

  • Nguyen, Thuan Dinh;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.235-241
    • /
    • 2009
  • The STS304 stainless steel was oxidized isothermally and cyclically at temperatures between 1050 and $1200^{\circ}C$ for 1 hr in air. During isothermal oxidation, it displayed good oxidation resistance at $1050^{\circ}C$. However, it suffered from breakaway oxidation above $1100^{\circ}C$, being accompanied with internal oxidation. During cyclic oxidation, it also displayed good oxidation resistance at $1050^{\circ}C$, but it suffered from massive weight loss above $1125^{\circ}C$. The oxide scales formed consisted primarily of $Fe_2O_3$, $Fe_3O_4$ with and without $Cr_2O_3$. They were generally non-adherent.

Electroless Copper Plating on 304L Stainless Steel Powders and Corrosion Resistance of the Sintered Compacts of Composite Powders (304L 스테인리스강 분말의 내식성 개선을 위한 무전해 구리 도금과 분말 소결체의 내식성 조사 연구)

  • Ahn, Jae-Woo;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2009
  • A study has been made about the effects of powder content, reaction temperature, reaction time, and stirring speed on the preparation of the stainless steel(STS) 304L powders plating with copper by an electroless plating method. The behavior of corrosion resistance of the sintered STS-Cu composite powders was also investigated by the salt spraying test The electroless plating technique was an effective method to manufactur the copper-uniform plating composite powders, the corrosion resistance of this sintered specimen was improved bysuppressing Cr precipitates on grain boundaries in the sintered compacts of composite powders.

Evaluation of Corrosion Property of Welding Zone of Stainless Steel by Laser Welding (Laser 용접한 스테인리스강의 용접부위의 부식특성에 관한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.64-69
    • /
    • 2012
  • Laser welding was carried out on austenitic 304 (STS 304) and 22 APU stainless steels. In this case, the differences between the corrosion characteristics of the welding zones of the two stainless steels were investigated using electrochemical methods. The Vickers hardness values of the weld metal (WM) zones in both cases, the STS 304 and 22 APU stainless steels, showed relatively higher values than those of other welding zones. The corrosion current densities of the heat affected zone (HAZ) of the 22 APU and the base metal (BM) zone of the STS 304 exhibited the highest values compared to the other welding zones. It is generally accepted that when STS 304 stainless steel is welded using a general welding method, intergranular corrosion is often observed at the grain boundary because of its chromium depletion area. However, when laser welding was performed on both the STS 304 and 22 APU stainless steels, no intergranular corrosion was observed at any of the welding zones. Consequently, it is considered that the intergranular corrosion of stainless steel can be controlled with the application of laser welding.

Fatigue Strength Evaluation on the IB-Type Spot-welded Lap Joint of 304 Stainless Steel Part 1 : Maximum Principal Stress (304 스테인리스 박강판 IB형 점용접이음재의 피로강도 평가 Part 1 : 최대 주응력에 의한 평가)

  • 손일선;오세빈;배동호
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.25-31
    • /
    • 1999
  • Stainless steel sheets are commonly used for vehicles such as the bus and the train. These are mainly fabricated by spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget. edge of the spot-welding. By the way, its fatigue strength is lower than base metal due to high stress concentration at the nugget edge of the spot-welding point. Especially, it is influenced by welding conditions as well as geometrical factors of spot welded joint. Therefore, it is not too much to say that structural rigidity and strength of spot-welded structures is decided by fatigue strength of spot welded lap joint. Thus, it is necessary to establish a reasonable and systematic long life design criterion for the spot-welded structure. In this study, numerical stress analysis was performed by using 3-dimensional finite element model on IB-type spot-welded lap joint of 304 stainless steel sheet under tension-shear load. Fatigue tests were also conducted on them having various thickness, joint angle, lapped length, and width of the plate. From the results, it was found that fatigue strength of IB-type spot-welded lap joints was influenced by its geometrical factors, however, could be systematically rearranged by maximum principal stress ({TEX}$σ_{1max}${/TEX}) at the nugget edge of the spot-welding point.

  • PDF

Study on Corrosion Resistance Enhancement in STS 304 through Electrochemical Polishing (전해연마를 이용한 STS 304의 부식방지 효과 연구)

  • JaeHwan Oh;WooHyuk Kim;HyeWon Cho;ByungKwan Park;SangHwa Yoon;Bongyoung Yoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.221-224
    • /
    • 2024
  • The 304 stainless steel has good corrosion resistance, so it is used in various industries. However, in an environment like seawater, stainless steel can be damaged by chloride ions, resulting in surface corrosion such as pitting and crevice corrosion. Electropolishing is a technique that smooths the surface and creates a passivation layer that can resist corrosion. In this study, electropolishing was applied as a surface finish to increase the smoothness of the metal surface and its corrosion resistance. We confirmed the topology of the electropolished surface of stainless steel by optical microscope and evaluated the corrosion resistance characteristics of electropolished stainless steel through a potentiodynamic experiment.