• 제목/요약/키워드: 30% Oxygen administration

검색결과 99건 처리시간 0.028초

The Effect of Oxygen Administration on Cerebrum Lateralization in Verbal Task (언어 과제 수행 시 산소 공급이 대뇌 편측화에 미치는 영향)

  • 정순철;김익현;김승철;손진훈
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 한국감성과학회 2003년도 추계학술대회 논문집
    • /
    • pp.81-83
    • /
    • 2003
  • The present study attempted to observe what changes the supply of highly concentrated(30%) oxygen cause to people's ability and cerebrum lateralization of verbal cognition, compared to air of normal oxygen concentration(21%). The experiment consisted of two runs, one for verbal cognition test with normal air(21% of oxygen) and for verbal cognition test with more oxygen in the air(30% of oxygen). Functional brain images were taken form 3T MRI using the single-shot EPI method. There were more activations observed at the occipital, parietal, temporal, and frontal lobes, but there were no changes in cerebrum lateralization with 30% oxygen administration. The result of task performance showed the accuracy increased at 30%'s concentration of oxygen rather than 21%'s. It is concluded that the positive effect on the verbal cognitive performance level by the highly concentrated oxygen administration was due to changeless increase of left and right cerebrum activation.

  • PDF

Changes in Verbal Cognitive Performance, Blood Oxygen Saturation and Heart Rate due to 30% Oxygen Administration (30% 산소 공급에 의한 언어 인지 능력, 혈중 산소 농도, 심박동율의 변화)

  • Chung Soon Cheol;Sohn Jin Hun;Tack Gye Rae;Yi Jeong Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권4호
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, changes in verbal cognitive performance, blood oxygen saturation and heart rate due to 30% concentration oxygen supply were observed. Five male (24.6±0.9) and five female (22.2±1.9) college students were asked to perform 28 verbal cognitive tasks of the same difficulty during two types of oxygen (concentration 21%, 30%) administration. The experimental sequence consisted of Rest1 (1 min.), Control (1 min.), Task (4 min.), and Rest2 (4 min.) and the physiological signals such as blood oxygen saturation and heart rate were measured throughout the stages. The experimental result showed that the performance increased significantly at 30%'s concentration of oxygen rather than 21%'s, which shows oxygen supply has positive influence on verbal cognitive performance. When 30% concentration oxygen is supplied, the oxygen saturation in the blood significantly increased comparing to 21%. The heart rate showed no significant difference. Significant correlations were found between changes in oxygen saturation and cognitive performance. It is suggested that 30% oxygen can stimulate brain activation by increasing actual blood oxygen concentration in the process of cognitive performance.

The Effect of Highly Concentrated Oxygen Administration on Cerebrum Lateralization of Young Men during Visuospatial Task (고농도의 산소 공급이 공간지각 과제 수행 시 젊은 성인 남자의 대뇌 편측화에 미치는 영향)

  • 정순철;손진훈;김익현
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권8호
    • /
    • pp.180-187
    • /
    • 2004
  • The present study attempted to investigate the effects of supply of highly concentrated (30%) oxygen on human ability of visuospatial cognition and cerebrum lateralization. compared to air of normal oxygen concentration (21%). The experiment consisted of two runs, one fur visuospatial cognition test with normal air (21% of oxygen) and for visuospatial cognition test with more oxygen in the air (30% of oxygen). Each run was composed of four blocks and each block included eight control tasks and five visuospatial tasks. Functional brain images were taken from 3T MRI using the single-shot EPI method. The result of task performance showed the accuracy increased at 30%'s concentration of oxygen rather than 21%'s. There were more activations observed at the left and right hemisphere, but there was decrease cerebrum lateralization with 30% oxygen administration. Thus, it is concluded that the positive effect on the visuospatial cognitive performance level by the highly concentrated oxygen administration was due to increase of cerebrum activation and decrease of cerebrum lateralization

Visuospatial Cognitive Performance, Hyperoxia and Heart Rate due to Oxygen Administration (산소 공급으로 유발된 공간 인지 능력, 혈중 산소 농도, 심박동율의 변화)

  • Chung Soon Cheol;Shon Jin Hun;Lee Bongsoo;Lee Soo Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권1호
    • /
    • pp.193-198
    • /
    • 2005
  • Changes in visuospatial cognitive performance, blood oxygen saturation and heart rate due to the highly concentrated oxygen administration were observed in this study. Six male ($25.8 \pm$1.0) and six female (($23.8 \pm$ 1.9) adults were asked to perform 20 visuospatial tasks with the same level of difficulties by supplying two different oxygen levels (21%, 30%). Experiment consisted of Rest1 (1 min.), Control (1 min.), Task (4 min.), and Rest2 (4 min.) and physiological signals such as blood oxygen saturation and heart rate were measured through each stage. The result showed the accuracy of task performance increased significantly at 30% oxygen concentration compared with 21%, which means oxygen supply has positive effects on visuospatial cognitive performance. When 30% oxygen was supplied, blood oxygen saturation during control and task phases was increased and heart rate was decreased compared with 21%. It means that 30% oxygen can stimulate brain activities by directly increasing the actual level of blood oxygen concentration during cognitive performance, and enough oxygen supply during cognitive performance make heart rate decrease.

An fMRI Study of Cognitive Function during Hyperoxia

  • Chung Soon-Cheol;Kim Ik-Hyeon;Tack Gye-Rae;Lee Soo Yeol;Sohn Jin-Hun
    • Journal of Biomedical Engineering Research
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2005
  • This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. Seventeen college students (right­handed, average age of 24.3) were selected as subjects for this study. An oxygen supply equipment that provides 21% and 30% oxygen at a constant rate of 8L/min was developed. In order to measure the performance level of visuospatial and verbal cognition, two psychological tests were developed. The experiment consisted of two runs, one for cognition task with normal air (21% oxygen) and the other for cognition task with hyperoxic air (30% oxygen). Visuospatial and verbal tasks were presented while brain images were scanned by a 3T fMRI system using the single-shot EPI method. The results showed that there was an improvement in performance and also increased activation in several brain areas in the higher oxygen condition. These results suggest that while performing cognitive tasks, high concentrations of oxygen administration make oxygen administration sufficient, thus making neural network activate more, and the ability to perform cognitive tasks increase.

Activation of Limbic Area due to Oxygen Administration during Visuospatial Task (공간 과제 수행 시 고농도 산소 공급에 의한 변연계 활성화에 관한 연구)

  • Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Jin-Seung;Tack, Gye-Rae;Chung, Soon-Cheol;Kim, Hyun-Jun
    • Science of Emotion and Sensibility
    • /
    • 제12권4호
    • /
    • pp.443-450
    • /
    • 2009
  • The purpose of this study is to observe activation of limbic system during performing visuospatial tasks by 21% and 30% oxygen administration. Eight right handed male college students were selected as the subjects for this study. A visuospatial task was presented while brain images were scanned by a 3T fMRI system. The experiment consisted of two runs: one was a visuospatial task under normal air(21% oxygen) condition and the other under hyperoxic air(30% oxygen) condition. The neural activations were observed at the limbic system which is seperated 8 regions such as cingulate gyrus, thalamus, limbic lobe, hypothalamus, hippocampus, parahippocampa gyrus, amygdala, and mammiilary body. By two oxygen levels, activation areas of limbic system are almost identical. Increased neural activations were observed in the cingulate gyrus and thalamus with 30% oxygen administration compared to 21% oxygen. During 30% oxygen administration, improvement of visuospatial task performance has a relation to increase of neural activation of subcortical structures such as thalamus and cingulate gyrus as well as cerebral cortex.

  • PDF

Visuospatial Cognitive Performance Following Oxygen Administration in Healthy Young Men (고농도 산소 공급에 따른 젊은 성인 남자의 공간지각 능력 변화)

  • Chung, S.C.;Tack, G.R.;Yi, J.H.;Sohn, J.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제30권1호
    • /
    • pp.11-16
    • /
    • 2004
  • Oxygen is an essential element for human beings' physical and mental activities, and in particular, plays an important role in brain functions. The present study attempted to investigate the effects of supply of highly concentrated (30%) oxygen on human ability of visuospatial cognition, compared to air of normal oxygen concentration (21%). This study sampled eight male university students (the average age: 23.5) as subjects. An equipment that supplies 21% and 30% oxygen at a constant rate of 8L/min was developed. Two types of questionnaire containing 20 questions were developed to measure the ability of visuospatial cognition, and accuracy and reaction time were calculated from the result of task performance. The average accuracy was $50.63{\pm}8.63$ [%] and $62.50{\pm}9.64$[%] for 21%and 30% oxygen respectively, and a statistically significant difference was found in the accuracy between the two types of oxygen. The average reaction time was $6.60{\pm}O.77$ [sec] and $7.23{\pm}0.69$ [sec] for 21%and 30% oxygen respectively, and a statistically significant difference was not found in the reaction time. The results showed that there is no difference in the average reaction time but the average accuracy rises with the supply of highly concentrated (30%) oxygen, indicating that the supply of highly concentrated oxygen has a partially positive effect on the ability of visuospatial cognition.

Observations of Oxygen Administration Effects on Visuospatial Cognitive Performance using Time Course Data Analysis of fMRI (뇌기능 자기공명영상의 시계열 신호 분석에 의한 공간인지과제 수행시 산소 공급의 효과 관찰)

  • Sohn Jin-Hun;You Ji-Hye;Eom Jin-Sup;Lee Soo-Yeol;Chung Soon-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • 제9권1호
    • /
    • pp.9-15
    • /
    • 2005
  • Purpose : This study attempted to investigate the effects of supply of highly concentrated $(30\%)$ oxygen on human ability of visuospatial cognition using time course data analysis of functional Magnetic Resonance Imaging (fMRI). Materials and Methods : To select an item set in the visuospatial performance test, two questionnaires with similar difficulty were developed through group testing. A group test was administered to 263 college students. Two types of questionnaire containing 20 questions were developed to measure the ability of visuospatial cognition. Eight college students (right-handed male, average age of 23.5 yrs) were examined for fMRI study. The experiment consisted of two runs of the visuospatial cognition testing, one with $21\%$ level of oxygen and the other with $30\%$ oxygen level. Each run consisted of 4 blocks, each containing control and visuospatial items. Functional brain images were taken from 37 MRI using the single-shot EPI method. Using the subtraction procedure, activated areas in the brain during visuospatial tasks were color-coded by t-score. To investigate the time course data in each activated area from brain images, 4 typical regions (cerebellum, occipital lobe, parietal lobe, and frontal lobe) were selected. Results : The average accuracy was $50.63{\pm}8.63$ and $62.50{\pm}9.64$ for $21\%\;and\;30\%$ oxygen respectively, and a statistically significant difference was found in the accuracy between the two types of oxygen (p<0.05). There were more activation areas observed at the cerebellum, occipital lobe, parietal lobe and frontal lobe with $30\%$ oxygen administration. The rate of increase in the cerebellum, occipital lobe and parietal lobe was $17\%$ and that of the frontal lobe, $50\%$. Especially, there were increase of intensity of BOLD signal at the parietal lobe with $30\%$ oxygen administration. The increase rate of the left parietal lobe was $1.4\%$ and that of the right parietal lobe, $1.7\%$. Conclusion : It is concluded that while performing visuospatial tasks, high concentrations of oxygen administration make oxygen administration sufficient, thus making neural network activate more, and the ability to perform visuospatial tasks increase.

  • PDF

Cerebral Activation Area Following Oxygen Administration using a 3 Tesla Functional MR Imaging (고 자장 기능적 MR 영상을 이용한 뇌 운동 영역에서 산소 주입에 따른 활성화 영역에 관한 연구)

  • Goo, Eun-Hoe;Kweon, Dae-Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • 제24권4호
    • /
    • pp.47-53
    • /
    • 2005
  • This study aim to investigate the effects of supply of oxygen enhances cerebral activation through increased activation in the brain and using a 3 Tesla fMRI system. Five volunteers (right handed, average age of 21.3) were selected as subjects for this study. Oxygen supply equipment that provides 30% oxygen at a constant rate of 15L/min was given using face mask. A 3 Tesla fMRI system using the EPI BOLD technique, and three-pulse sequence technique get of the true axial planes scanned brain images. The author can get the perfusion images of the brain by oxygen inhalation with susceptibility contrast EPI sequence at the volunteers. Complex movement consisted of a finger task in which subjects flexed and extended all fingers repeatedly in union, without the fingers touching each other. Both task consisted of 96 phases including 6 activations and rests contents. Post-processing was done on MRDx software program by using cross-correlation method. The result shows that there was an improvement in performance and also increased activation in several areas in the oxygen method. These finding demonstrates that while performing cognitive tasks, oxygen administration was due to increase of cerebral activation.

A Study on Visuospatial Cognitive Performance Following Oxygen Administration using fMRI (뇌기능 영상을 이용한 외부 산소 공급에 따른 공간 지각 능력 변화에 관한 연구)

  • 정순철;김익현;이봉수;이정미;손진훈;김승철
    • Journal of Biomedical Engineering Research
    • /
    • 제24권4호
    • /
    • pp.267-273
    • /
    • 2003
  • The present study attempted to observe what changes the supply of highly concentrated (30%) oxygen cause to people's ability of visuospatial cognition, compared to air of normal oxygen concentration (21%). This study sampled eight male university students (the average age : 23.5) as subjects for functional Magnetic Resonance Imaging (MRI) study It also developed equipment that supplies 21% and 30% oxygen) at a constant rate of 8L/min. Two questionnaires containing 20 questions were developed to measure the ability of visuospatial cognition, and accuracy was calculated from the result of task performance. The experiment paradigm consisted of the run conducting tasks at 30%'s concentration of oxygen and another run at 21%'s concentration of oxygen. Each run was composed of four blocks and each block included eight control tasks and five visuospatial taks. 3T MRI was used and fMRI was obtained through the single-shot EPI method. The activation in the occipital-associated area, bilateral superior parietal lobes, bilateral inferior parietal lobes. bilateral precuneus, bilateral postcentral gyri, bilateral middle frontal gyri, bilateral inferior frontal gyri, bilateral medial frontal gyri, bilateral superior frontal gyri, bilateral cingulate gyri was significantly increased at the 30%'s concentration of oxygen rather than 21%'s. Furthermore, the result of task performance showed the accuracy increased at 30%'s concentration of oxygen rather than 21%'s. From the result of this study, it is concluded that the supply of highly concentrated oxygen has a positive effect on the ability of visuospatial cognition.