• Title/Summary/Keyword: 3-unit bridge

Search Result 147, Processing Time 0.024 seconds

A Study on the Strength Rating of Continuous Composite Plate Girder Bridges by ALFD (ALFD방법에 의한 연속합성판형교의 강도평가에 대한 연구)

  • Han, Sang Cheol;Chung, Kyung Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.213-222
    • /
    • 1999
  • Elastic-plastic methods have been used for the better prediction of the actual behavior of continuous-composite plate girder bridges in the overload and maximum load analysis. The structural evaluation using ALFD(Alternate Load Factor Design) uses the elastic-plastic analysis. The plastic rotations that remain after the load is removed can be occurred by the yielding locations of the maximum moment section. This situation can occur due to the residual stresses even if the moment is below the theoretical yield moment. The local yielding causes positive automoments that assure elastic behavior under subsequent overloads. In this study, the automoments at the piers occurred due to the unit plastic rotations and other locations were calculated by the conjugate-beam method and three-moment equation, using the nine design span with progressively smaller pier sections. The automoments were determined by the developed computer programs in this study in which the moments and plastic rotations from the continuity and moment-inelastic rotation relationships must be equal. And also the ratings of 3-span continuous composite plate girder bridges with non-compact section were carried out according to the Korean Highway Bridge Specification.

  • PDF

Development of Flexure Applied Bond head for Die to Wafer Hybrid Bonding (Die to Wafer Hybrid Bonding을 위한 Flexure 적용 Bond head 개발)

  • Jang, Woo Je;Jeong, Yong Jin;Lee, Hakjun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2021
  • Die-to-wafer (D2W) hybrid bonding in the multilayer semiconductor manufacturing process is one of wafer direct bonding, and various studies are being conducted around the world. A noteworthy point in the current die-to-wafer process is that a lot of voids occur on the bonding surface of the die during bonding. In this study, as a suggested method for removing voids generated during the D2W hybrid bonding process, a flexible mechanism for implementing convex for die bonding to be applied to the bond head is proposed. In addition, modeling of flexible mechanisms, analysis/design/control/evaluation of static/dynamics properties are performed. The proposed system was controlled by capacitive sensor (lion precision, CPL 290), piezo actuator (P-888,91), and dSpace. This flexure mechanism implemented a working range of 200 ㎛, resolution(3σ) of 7.276nm, Inposition(3σ) of 3.503nm, settling time(2%) of 500.133ms by applying a reverse bridge type mechanism and leaf spring guide, and at the same time realized a maximum step difference of 6 ㎛ between die edge and center. The results of this study are applied to the D2W hybrid bonding process and are expected to bring about an effect of increasing semiconductor yield through void removal. In addition, it is expected that it can be utilized as a system that meets the convex variable amount required for each device by adjusting the elongation amount of the piezo actuator coupled to the flexible mechanism in a precise unit.

THE OPTIMAL DESIGN OF CONNECTORS IN ALL CERAMIC FIXED PARTIAL DENTURES MANUFACTURED FROM ALUMINA TAPE (최적설계기법을 이용한 완전도재 가공의치의 연결부 형태 보강)

  • Oh Nam-Sik;Kim Han-Sung;Lee Myung-Hyun;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • Statements of problem: All ceramic fixed partial denture cores can be made by the slip casting method and the advanced alumina tape method. The fracture resistance of these core connector areas is relatively low. Purpose: The purpose of this study is to standardize the appropriate volumetric figure and location of the connectors in the alumina core fabricated in alumina tape to be used in fixed partial dentures by way of topology optimization. Material and method: A maxillary anterior three-unit bridge alumina core with teeth form and surrounding periodontal apparatus model was used to ultimately design the most structurally rigid form of the connector. Loadings from a $0^{\circ}$, $45^{\circ}$ and $60^{\circ}$ to the axis of each tooth were applied and analyzed with the 3-D finite element analysis method. Using the results from these experiments, the topology optimization was applied and the optimal reinforcement layout of connector was obtained and the detail shape in the fixed partial denture core was designed. Results: The modified prosthesis with the form of a bulk in the lower lingual surface of the connector in the event, reduced the stress concentration up to 20% in the 3-D FEA. Conclusion: The formation of a bulk in the lower lingual connector area of an alumina core for a fixed partial denture decreases the stress to a clinically favorable measure but does not harm the esthetic point of view. This result illustrates the possibility of clinical application of the modified form designed by the topology optimization method.

A Retrospective Clinical Study of Survival Rate for a Single Implant in Posterior Teeth (구치부 단일 임플란트의 생존율에 대한 후향적 연구)

  • Han, Sung-Il;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.3
    • /
    • pp.186-199
    • /
    • 2012
  • Purpose: Single implants, of which screw loosening has been observed frequently, presents problems such as fixtures fractures, marginal bone loss, and inflammation of the soft tissue around the implant. However, the single implant is more conservative, cost effective, and predictable compared to the 3 unit bridge with respect to the long-term outcome. This study evaluated the survival rate as well as future methods aimed at increasing the survival rate in single implants in posterior teeth. Methods: Among the implants placed in the Dankook University Dental Hospital department of Oral & Maxillofacial surgery from January 2001 to June 2008, 599 implants placed in the maxillar and mandibular posterior were evaluated retrospectively. Survival rates were investigated according to implant location, cause of tooth loss, gender, age, general disease, fixture diameter and length, surface texture, implant type and shape, presence of bone graft, surgery stage, surgeons, bone quality and opposite teeth. Results: Out of 599 single implants in posterior teeth, 580 implants survived and the survival rate was 96.8%. The difference in survival rate was statistically significant according to the implant location. The survival rate was low (84.2%) in implants exhibiting a wide diameter (${\geq}5.1mm$) and the surface treated by the acid etching group demonstrated a significantly lower survival rate (91.1%). One stage surgical procedure, which implemented a relatively better bone quality survival rate (100%), was higher than the two stage surgical procedure (96.1%). The survival rate of type IV bone quality (75%) was significantly lower than the other bone quality. Conclusion: Single posterior teeth implant treatments should use an improved surface finishing fixture as well as careful and safe procedures when performing implant surgery in the maxilla premolar and molar regions since bone quality is poor.

Vibration and Noise Level on the Training Ship Pusan 403 (실습선 부산 403호의 진동과 소음)

  • Park, Jung Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.8-8
    • /
    • 1987
  • This paper describes on the distribution of the vibration and the noise produced on a skipjack pole and line training ship M/S Pusan 403 (243GT, 1,000ps) under the cruising or drifting condition. The vibration and the noise level were measured by use of protable vibration analyzer (B and K 3513) and sound level meter (B and K 2205), and so the vibration level was converted into dB unit. The check points were set through every decks and around important places of the ship. The results obtained can be summarized as follows: 1. The vibration and the noise level 1) On the main deck, both the vibration and the noise level were highest at the vertically above the main engine, whereas the vibration level was the lowest in the bow store and the noise level beneath the bridge. 2) Under cruising condition, the vibration level around the cylinder head of main engine, port side of the engine room, on the shaft tunnel was 80, 67, 65 dB and the noise level 104, 87, 86 dB, respectively. 3) The vibration level on the vertical line passing through the bridge was the highest at the orlop deck with 60 dB and the lowest on the bridge deck with 55 dB, whereas the noise level the highest at the compass deck with 75 dB and the lowest at the orlop deck with 53 dB. 4) The vibration and the noise level on the open decks were the highest with 65 dB and 84 dB on the boat deck, whereas the vibration level was the lowest at the lecture room with 51 dB and the noise level the lowest at the fore castle deck with 57 dB. 5) On the orlop decks, both the vibration and the noise level were the highest at the engine room with 65 dB and 85 dB, and the lowest at bow store with 54 dB and 52 dB, respectively. Comparing with the vibration level and the noise level, the vibration level was higher than the noise level in the bow part and it was contrary in the stern part of the ship. 2. Vibration analysis 1) The vibration displacement and the vibration velocity were the greatest at the cylinder head of main engine with 100μm and 11mm/sec, and were the smallest at the compass deck with 3μm and 0.07mm/sec. They were also attenuated rapidly around the frequency of 100Hz and over. 2) The vibration acceleration was the greatest at the cylinder head with the main frequency of 1KHz and the acceleration of 1.1mm/sec super(2), and the smallest at the compass deck with 30KHz and 0.05mm/sec super(2).

Vibration and Noise Level on the Training Ship Pusan 403 (실습선 부산 403호의 진동과 소음)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.54-60
    • /
    • 1987
  • This paper describes on the distribution of the vibration and the noise produced on a skipjack pole and line training ship M/S Pusan 403 (243GT, 1,000ps) under the cruising or drifting condition. The vibration and the noise level were measured by use of protable vibration analyzer (B and K 3513) and sound level meter (B and K 2205), and so the vibration level was converted into dB unit. The check points were set through every decks and around important places of the ship. The results obtained can be summarized as follows: 1. The vibration and the noise level 1) On the main deck, both the vibration and the noise level were highest at the vertically above the main engine, whereas the vibration level was the lowest in the bow store and the noise level beneath the bridge. 2) Under cruising condition, the vibration level around the cylinder head of main engine, port side of the engine room, on the shaft tunnel was 80, 67, 65 dB and the noise level 104, 87, 86 dB, respectively. 3) The vibration level on the vertical line passing through the bridge was the highest at the orlop deck with 60 dB and the lowest on the bridge deck with 55 dB, whereas the noise level the highest at the compass deck with 75 dB and the lowest at the orlop deck with 53 dB. 4) The vibration and the noise level on the open decks were the highest with 65 dB and 84 dB on the boat deck, whereas the vibration level was the lowest at the lecture room with 51 dB and the noise level the lowest at the fore castle deck with 57 dB. 5) On the orlop decks, both the vibration and the noise level were the highest at the engine room with 65 dB and 85 dB, and the lowest at bow store with 54 dB and 52 dB, respectively. Comparing with the vibration level and the noise level, the vibration level was higher than the noise level in the bow part and it was contrary in the stern part of the ship. 2. Vibration analysis 1) The vibration displacement and the vibration velocity were the greatest at the cylinder head of main engine with 100$\mu$m and 11mm/sec, and were the smallest at the compass deck with 3$\mu$m and 0.07mm/sec. They were also attenuated rapidly around the frequency of 100Hz and over. 2) The vibration acceleration was the greatest at the cylinder head with the main frequency of 1KHz and the acceleration of 1.1mm/sec super(2), and the smallest at the compass deck with 30KHz and 0.05mm/sec super(2).

  • PDF

Real Time Alarm System of Enormous Structure Using RTK GPS (RTK GPS를 이용한 대형구조물의 실시간 경보 시스템)

  • 박운용;송연경;이현우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2004
  • Such social structures as bridges,, buildings, dams and towers have been transformed by their own load or fundamental ground. They have been behaved by other external causes. These regular or irregular behaviors threaten to do their users safety. Therefore, to monitor the load of the structures or reaction shown by them could help to verify their behaviors. RTK GPS allows the use of a static base station and remote rover unit to allow f3r data collection within several seconds and in real time. It is useful for monitoring the behaviors of massive structures like bridges. In this Study, Among GPS methods, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when measured the behavior of main tower of a suspension bridge by using RTK GPS. Comparing a deviation between observation values, X axis was Imm, Y axis was 1mm and Z axis 2.2mm. It turned out that it was possible to monitor and measure structures by RTK GPS.

The effect of coloring liquid dipping time on the fracture load and color of zirconia ceramics

  • Orhun, Ekren
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • PURPOSE. The aims of the study were to evaluate the fracture load of zirconia core material after dipping in coloring liquid at different time intervals and to compare the color of dipped blocks with that of prefabricated shaded blocks. MATERIALS AND METHODS. 3-unit bridge frameworks were designed digitally. Sixty frameworks were fabricated using uncolored zirconia blocks by CAD/CAM and divided into 4 groups randomly (n = 15). Group 2 (G2) was subjected to coloring liquids for 2 minutes, Group 4 (G4) for 4 minutes, and Group 6 (G6) for 6 minutes. CFS group was not subjected to any coloring procedure. After coloring, color differences between the test groups and a prefabricated shaded zirconia group (CPZ, n = 15) were evaluated by using a spectrophotometer. Fracture test was conducted immediately after shade evaluation with a Testometric test device at a cross-head speed of 1 mm/sec. Statistical analysis for evaluating color and fracture load was performed by using one way ANOVA followed by Tukey HSD test ($P{\leq}.05$). Weibull analysis was conducted for distribution of fracture load. RESULTS. There was no difference in terms of fracture load and color between CFS (1176.681 N) and G2 (985.638 N) group and between CPZ (81.340) and G2 (81.140) group, respectively. Fracture load values of G4 (779.340 N) and G6 (935.491 N) groups were statistically significantly lower than that of CFS group ($P{\leq}.005$). The color values of G4 (79.340) and G6 (79.673) groups were statistically different than that of CPZ group ($P{\leq}.005$). CONCLUSION. Prolonged immersion of zirconia in coloring liquid not only negatively affected the fracture load of the zirconia being tested in the current study but also deteriorated the desired shade of the restoration.

A Study on Crane Wire Rope Flaws Signal Processing Using Discrete Wavelet Transform (Wavelet 변환을 이용한 크레인 와이어 로프 결함 신호처리에 관한 연구)

  • Min, Jeong-Tak;Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.155-159
    • /
    • 2002
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, wire rope of crane is important component to container transfer. If it happens wire rope failures in operating, it may lead to safety accident, economic power loss by productivity decline, competitive power decline of container terminal and so on. To solve this problem, we developed wire rope fault detecting system as a portable instrument, and this system is consisted of 3 parts that fault detecting part using hall sensor, permanent magnets and analog unit, and digital signal processing part using data acquisition card, monitoring part using wavelet transform, denoising method. In this paper, a wire rope is scanned by this system after makes several broken parts on the surface of wire rope artificially. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data that was used filter. In practical applications of denoising, it is shown that wavelet pursue it with little information loss and smooth signal display. It is verified that the detecting system by denoising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension of wire ropes exchange period and could competitive power. Also, this system is possible to apply in several fields like that elevator, lift and so on.

  • PDF

Use of measuring gauges for in vivo accuracy analysis of intraoral scanners: a pilot study

  • Iturrate, Mikel;Amezua, Xabier;Garikano, Xabier;Solaberrieta, Eneko
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2021
  • PURPOSE. The purpose of this study is to present a methodology to evaluate the accuracy of intraoral scanners (IOS) used in vivo. MATERIALS AND METHODS. A specific feature-based gauge was designed, manufactured, and measured in a coordinate measuring machine (CMM), obtaining reference distances and angles. Then, 10 scans were taken by an IOS with the gauge in the patient's mouth and from the obtained stereolithography (STL) files, a total of 40 distances and 150 angles were measured and compared with the gauge's reference values. In order to provide a comparison, there were defined distance and angle groups in accordance with the increasing scanning area: from a short span area to a complete-arch scanning extension. Data was analyzed using software for statistical analysis. RESULTS. Deviations in measured distances showed that accuracy worsened as the scanning area increased: trueness varied from 0.018 ± 0.021 mm in a distance equivalent to the space spanning a four-unit bridge to 0.106 ± 0.08 mm in a space equivalent to a complete arch. Precision ranged from 0.015 ± 0.03 mm to 0.077 ± 0.073 mm in the same two areas. When analyzing angles, deviations did not show such a worsening pattern. In addition, deviations in angle measurement values were low and there were no calculated significant differences among angle groups. CONCLUSION. Currently, there is no standardized procedure to assess the accuracy of IOS in vivo, and the results show that the proposed methodology can contribute to this purpose. The deviations measured in the study show a worsening accuracy when increasing the length of the scanning area.