• Title/Summary/Keyword: 3-point bending strength

Search Result 350, Processing Time 0.024 seconds

The effect of short and long duration sintering method on microstructure and flexural strength of zirconia (단시간과 장시간의 소결방법에 따른 지르코니아의 굴곡 강도와 미세구조의 변화)

  • Lee, Ha-Bin;Lee, Tae-Hee;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • Purpose: The aim of this study was to investigate the influence of short and long duration sintering on microstructure and flexural strength of zirconia. Methods: To conduct three-point bending test, Zirconia specimens are milled according to ISO 6872 guidelines(N=18, n=9 per group). Two specimens group(n=8) is sintered for 10 hours(Standard schedule) and 3 hours(Speed schedule) at the peak temperature of 1550℃ with silicon carbide sintering furnace. Flexural strength of specimens are measured by instron. After coating each specimen(n=1), microstructure of specimens is observed using Scanning Electron Microscope(SEM). T-test was utilized to statistically assess the data. Results: The mean and standard deviation value of the flexural strength for standard schedule group are 578.15±57.48Mpa, that of speed schedule are 465.9±62.34Mpa. T-test showed significant differences in flexural strength between two zirconia specimen group which applied standard schedule and speed schedule respectively(p<0.05). Conclusion: The result of this study showed that the increase in sintering time led to increased grain size, and also to a positive effect on the flexural strength.

Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites (노치 유무와 섬유혼입률에 따른 UHPCC의 휨인장강도 비교)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.525-533
    • /
    • 2012
  • In this study, bending tests were performed on beam specimens made of UHPCC with the fiber content range of 0~5 vol% to investigate the contribution of fiber content to first cracking strength and flexural tensile strength. Also, four-point bending tests for unnotched beam as well as three-point bending test for notched beam were performed to estimate the effect of the presence of notch on the strengths. The experiment result showed that the increase in fiber content made linear improvement in the flexural tensile strength; whereas first cracking strength was enhanced only when at least 1 vol% of fibers was incorporated. Comparison of the bending test results with and without notch showed that the notch effect varied with the fiber content. The increase in fiber content diminished the effect of stress concentration on the notch tip, reducing the difference in the strengths. With much higher fiber content, the effect of stress concentration almost disappeared and the defection on cracking plane or the size effect dominated the strengths, consequently resulting in higher strengths in the notched beams than the unnotched ones.

The Effect of Blasting Treatment on the Corrosion Characteristics in the Zr-based Amorphous Alloy Die Castings (Zr기 비정질 합금 다이캐스팅 주조품의 부식 특성에 미치는 블라스팅 처리의 영향)

  • Lee, Byung-Chul;Kim, Sung-Gyoo;Park, Bong-Gyu;Bae, Cha-Hurn;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A Zr-based amorphous alloy specimen was produced by vacuum die casting process. The salt spray test was carried out using the specimens in the as-cast, $Al_2O_3$ and $ZrO_2$ particle blasted state. Using these specimens, the SEM-EDX and XRD analyses, DSC measurement and bending strength test were conducted. After the salt spray test, the specimens were not experienced phase change and thermal characteristics of the alloys were remained unchanged. In the as-cast specimen, corrosion products were not observed. However, in the $Al_2O_3$ particle blasted specimen, pitting corrosion occurred and the detected corrosion products were $ZrCl_2$ and $NaZrO_3$. Due to the salt spray test, bending strength of the $Al_2O_3$ blasted specimens showed about 100 MPa lower strength than the other specimens. The bending fracture surface was vein pattern which was shown typically in the amorphous alloys.

Thermal shock behavior of alumina ceramics by ball-on-3 ball test (Ball-on-3 ball test에 의한 알루미나 세라믹스의 열충격 거동)

  • 이중현;박성은;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1062-1068
    • /
    • 1999
  • The flexural strength distribution of alumina ceramics was observed using ball-on-3 ball test after thermal shock into the distilled water of 25$^{\circ}C$ Crack distribution was also observed by dye-penetration after thermal shock test. Fracture probability of alumina ceramics by ball-on-3 ball test was studied and compared with that by 3-point bending test. The crack distance from the center of thespecimen showed the stronger effect on the flexural strength by ball-on-3 ball test than the crack density.

  • PDF

Dependence of Strength and Crack Growth of PZT Ceramics on Poling Strength (Poling 강도 변화에 따르는 PZT 세라믹스의 강도와 균열성장 의존성)

  • 이홍림;권종오;한봉석
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.877-885
    • /
    • 1997
  • The dependence of strength, crack growth, fracture mode and degree of domain rearrangement of PZT ceramics on poling strength were studied. The PZT [(Pb0.94Sr0.06)(Zr0.46Ti0.54)O3+Nb(trace)] specimens were poled at 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 kv/mm, and the strength of the specimens was measured by 3 point flexure system. The bending strength of the specimen decreased in different modes according to the bending directions; xz, zx and yz plane direction with x axis of the poling direction in Cartesian coordinate system. The strength differences between the directions increased as the poling strength increased. The fracture mode transferred to intergranular fracture mode from transgranular one as the poling strength increased. The mechanical breakdown occurred when the poling strength higher than 3 kV/mm was applied to the specimen. It was observed that the crack length increased in the normal direction to the poling direction, however, decreased in the parallel direction to the poling direction when the poled PZT specimen was indented by the Vickers indenter. However, the crack produced by indentation continuously was continuously increased little by little after indentation on the specimen. The domain rearrangement occurred as the poling strength increased and the domains were rearranged more effectively when the electric field was continuously increased little by little.

  • PDF

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

A comparative study on the bond strength of porcelain to the millingable Pd-Ag alloy

  • Hong, Jun-Tae;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.372-378
    • /
    • 2014
  • PURPOSE. The porcelain fused to gold has been widely used as a restoration both with the natural esthetics of the porcelain and durability and marginal fit of metal casting. However, recently, due to the continuous rise in the price of gold, an interest towards materials to replace gold alloy is getting higher. This study compared the bond strength of porcelain to millingable palladium-silver (Pd-Ag) alloy, with that of 3 conventionally used metal-ceramic alloys. MATERIALS AND METHODS. Four types of metal-ceramic alloys, castable nonprecious nickel-chrome alloy, castable precious metal alloys containing 83% and 32% of gold, and millingable Pd-Ag alloy were used to make metal specimens (n=40). And porcelain was applied on the center area of metal specimen. Three-point bending test was performed with universal testing machine. The bond strength data were analyzed with a one-way ANOVA and post hoc Scheffe's tests (${\alpha}=.05$). RESULTS. The 3-point bending test showed the strongest ($40.42{\pm}5.72$ MPa) metal-ceramic bond in the nonprecious Ni-Cr alloy, followed by millingable Pd-Ag alloy ($37.71{\pm}2.46$ MPa), precious metal alloy containing 83% of gold ($35.89{\pm}1.93$ MPa), and precious metal alloy containing 32% of gold ($34.59{\pm}2.63$ MPa). Nonprecious Ni-Cr alloy and precious metal alloy containing 32% of gold showed significant difference (P<.05). CONCLUSION. The type of metal-ceramic alloys affects the bond strength of porcelain. Every metal-ceramic alloy used in this study showed clinically applicable bond strength with porcelain (25 MPa).

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

Influence of 10-MDP concentration on the adhesion and physical properties of self-adhesive resin cements

  • Shibuya, Kazuhiko;Ohara, Naoko;Ono, Serina;Matsuzaki, Kumiko;Yoshiyama, Masahiro
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2019
  • Objectives: Self-adhesive resin cements contain functional monomers that enable them to adhere to the tooth structure without a separate adhesive or etchant. One of the most stable functional monomers used for chemical bonding to calcium in hydroxyapatite is 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). The aim of this study was to evaluate the influence of the10-MDP concentration on the bond strength and physical properties of self-adhesive resin cements. Materials and Methods: We used experimental resin cements containing 3 different concentrations of 10-MDP: 3.3 wt% (RC1), 6.6 wt% (RC2), or 9.9 wt% (RC3). The micro-tensile bond strength of each resin cement to dentin and a hybrid resin block (Estenia C&B, Kuraray Noritake Dental) was measured, and the fractured surface morphology was analyzed. Further, the flexural strength of the resin cements was measured using the three-point bending test. The water sorption and solubility of the cements following 30 days of immersion in water were measured. Results: The bond strength of RC2 was significantly higher than that of RC1. There was no significant difference between the bond strength of RC2 and that of RC3. The water sorption of RC3 was higher than that of any other cement. There were no significant differences in the three-point bending strength or water solubility among all three types of cements. Conclusions: Within the limitations of this study, it is suggested that 6.6 wt% 10-MDP showed superior properties than 3.3 wt% or 9.9 wt% 10-MDP in self-adhesive resin cement.